我們把線性模型們都大統一了。 接下來就要進入到令人興奮的神經網路模型了! 首先,我們先來介紹著名的感知器...嗯...前面不是介紹過了? 喔喔!對喔!他長這個...
我們前面介紹了線性模型跟基本的神經網路模型。 可能有的人會覺得我怎麼不放神經網路的圖,看數學式子看的很痛苦。 是的,我的確沒打算放圖。一來神經網路的圖在各大網站...
為什麼大家到現在都這麼迷神經網路模型? 我想主因不是因為他是模擬生物而來,他有一些更扎實的數學特性。 我們前面講過各種線性模型,然後將他過渡到神經網路。 今天要...
接著我們就來到了蠻重要的問題,既然一個 hidden layer 的網路架構就可以逼近任何連續函數,那麼為什麼要深度學習? 對於這個問題,台大李宏毅老師有非常詳...
機器學習的技術已經發展了非常久的時間,我們有非常多的模型可以幫我們做預測,包含像是 regression、classification、clustering、s...
既然前一篇提到學習特徵是一件重要的事,那麼我們就來講講 autoencoder 吧! Autoencoder 就是一個 unsupervised 方法,試圖學習...
我們來更具體一點講 multi-layer perceptron (MLP)。 最簡單的版本莫過於 linear MLP,不過不太會有人去用他,其實只是每層 l...
熱身運動都做好了,接下來我們就一路往影像處理上的重要技術 CNN 前進啦! Convolutional neural network,顧名思義,他是一種神經網路...
Convolution layer 這邊我們回到我們的 convolution layer,如果把以上的一維向量拓展到二維的矩陣資料會長什麼樣子呢? 我們先來看...