深度學習就像是個幻境之地,許多人曾經尋訪卻只得到碎片般的景色。在這裡,希望讓想成為深度學習的魔法使玩家能一覽深度學習之全貌,在30天後可以自信的說出:「沒錯,請你叫我『大魔法使』」。
內容將包含深度學習的Learning map、最新研究技術與商業應用。
在上篇介紹 AutoEncoder 的應用時有提到 VAE(Variational Autoencoder) 可以生成圖片,但是它有一些限制。VAE 實際上沒有...
Yann LeCun (Facebook AI 研究院院長)曾對 GAN 表示讚賞: The most important one, in my opi...
本篇要來實作一個簡單版的 GAN 模型。如果忘記 GAN 是什麼的同學,傳送門在此: [魔法陣系列] Generative Adversarial Netw...
在 魔法陣系列 中,有說明不同魔法陣的應用例子,而這篇想用圖表來帶出整體深度學習的應用幅度,讓各位準魔法使們一覽在深度學習在各行業的魔法效果有多強大。 深度學...
「Deep Learning模型最近若干年的重要进展」一文提到深度學習分四個脈絡: CV/Tensor 生成模型 Sequence Learning Deep...
要介紹 Attention 機制,就不能錯過這篇經典:Google 在 NIPS2017 上發表的論文《Attention Is All You Need》。本...
在理解 DQN 魔法陣的結構後,本篇來帶大家訓練 DQN 模型玩 Flappy Bird,引用參考的程式碼在此:https://github.com/yanpa...
電腦視覺(Computer Vision)一直是我非常著迷的領域,旨在模仿人類視覺系統,作為賦予機器人智能行為的助力,在1966年夏季,MIT AI LAB 成...
自然語言處理(NLP)的目標是設計演算法來讓電腦「理解」自然語言以執行一些任務,依難易度舉例如下: 簡單 拼寫檢查(Spell Checking) 關鍵字搜...
鐵人賽第三十篇,想帶大家來探討聊天機器人(Chatbot)這塊的發展。 圖片來源:https://chatbotsmagazine.com/why-the-...