如何充分利用OpenAI的API,以創建更為智能和多元化的AI應用。其中一個關鍵是Prompt,提示工程是一種獨特的技術,透過精心設計和優化OpenAI的輸入與輸出,使AI更能準確地理解並回答人類的問題,進而使LLM模型能生成更好的回應。而語義核心則是一種開源的SDK,它讓開發者能夠使用常見的程式語言,如Python或C#,來整合OpenAI以及其他AI服務,例如Azure OpenAI和Hugging Face。更進一步地,開發者可以透過插件和記憶體來擴展AI的技能和靈活性,是一個以面向開發者為主的SDK,適合運用在較複雜的LLM模型整合性應用場景。
前言 這系列打算談談關於ChatGPT應用面的開發,主軸聚焦在提示工程以及開源的框架Semantic Kernel運用,然而由於時間緊湊,文章順序只能儘可能有連...
前言 相信有用過ChatGPT都有發現到,要讓ChatGPT的回應符合我們想要的內容,其中很重要的關鍵是Prompt(又稱提示、詠唱),本篇就來談談Prompt...
前言 上一篇提到Prompt是LLM模型的誘發劑,本篇接續介紹Prompt的基本用法和一些初階技法,幫助讀者更有效的與這些語言模型互動。 接下來的內容均以Ch...
前言 前一篇提到Prompt 的基本技法,本篇開始會談一些進階式的用法,首先來看的是In-Context Learning。雖然前一篇的Prompt 基本技法在...
提示工程(Prompt Engineering):Prompt 進階技法 chain-of-thought (CoT) 前言 前一篇提到 In-Context...
前言 前一篇提到思維鏈(CoT)技法,用於處理邏輯推理、算述運算效果特別不錯,本篇延伸思維鏈(CoT)技法,介紹另一個進階技法Tree of Thoughts...
前言 經過前面幾篇內容,將Prompt的技法從基本運用到目前幾個研究實驗論文所提出的進階技法,做了一番說明,本篇將引用OpenAI與Micrsoft官方推出的針...
前言 從本篇開始進入開發面的實踐,在進入Semantic Kernel之前,讓我們先前會用的模型做大略的認識,總不能要開發LLM應用,卻不認識模型對吧。目前較為...
前言 前一篇說明目前OpenAI上的可用模型,部份模型已被公告即將退役,因此就沒有特別再提到,接下來很重要的一件事就是,我們必須了解如何使用OpenAI的API...
前言 本篇開始進入LLM應用的開發,首先假設我們只知道LLM以及前面所學到的Prompt技巧,不知道任何的SDK。我想目前多數有在開發LLM應用,應該都是這一類...