去年開始持續關注Semantic Kernel 這個的框架,經過了一年如同生成式AI一樣,Semantic Kernel 持續快速的進行版本演化,因此這一次再度以Semantic Kernel 為主軸,在這30天的技術寫作挑戰中,以目前最新版的Semantic Kernel進行探索生成式應用,將逐步介紹如何使用 Semantic Kernel 實現 AI 模型的調用與管理,展示生成式應用開發的流程,並結合範例說明。
今天依然是 Multi AI Agents 主題,只不過今天的 Multi AI Agents 概念上不同於上一篇的協同合作,而是這些 Multi AI Age...
許多開發者在聽到 Semantic Kernel 是 Microsoft 開源的時後,會自然聯想到是不是只能搭配 OpenAI 或 Azure OpenAI,再...
上一篇打破迷思示範如何連接 Hugging Face,這一次換成 Google AI 也大丈夫滴。眾所皆知目前除了 OpenAI(Azure OpenAI)...
隨著生成式 AI 的爆炸式發展,越來越多的開發者或企業希望可以在地端執行大語言模型(LLM),不僅能確保資料隱私,更能減少對雲端服務的依賴,當然這裡也涉及到企業...
在開發 LLM(大型語言模型)應用的過程中,有沒有發現有時候執行的結果跟你預期的有點不一樣?你設計的 Prompt(提示語)或是 Plugin function...
我想大多數開發者都聽過 Azure OpenAI (又稱AOAI),但應該比較少開發者聽過 Azure AI Studio 以及 Azure AI Infere...
生成式AI除了常聽到文案寫作、翻譯之外,RAG 應該是另一個也很常聽見或看到的應用。RAG 是「檢索增強生成」(Retrieval-Augmented Gene...
上一篇講了 RAG 應用裡很重要的向量處理,這次要來聊聊怎麼用快閃記憶體來搞定向量資料的儲存以及進行快速檢索的做法。這個示範不使用任何向量資料庫產品,單純以快閃...
當我們談到 RAG 應用的時候,除了向量化之外,另一個重點就是向量資料庫,與傳統資料庫不同,向量資料庫是專門為了高維度資料以及相似度搜尋而存在的,目前市場有許多...
在前面二篇的文章裡,範例均是以文字陣列資料做為向量處理的來源資料,而實務上可能面臨更多的來源資料格式,包含:Web pages、PDF、Word、Markdow...