完成資料篩選後,我們可以針對特定欄位進行排序,幫助我們快速整理與觀察,以下將透過案例替大家介紹兩種資料排序的方式,內容包含: 根據數值(value)排序...
資料在產生或蒐集時可能因為各種原因出現缺失值(Missing Value),導致資料集中缺少某些觀測值或該值無法表示或測量,因此,處理缺失值是數據分析中很重...
在處理資料集時,資料清理是不可或缺的步驟,刪除不需要的數據或特徵以確保數據的品質是常見的操作,本文將說明資料清理中有關刪除的操作方法,內容包含: 刪除缺失...
除了採用「刪除」的方式清理資料外,為確保數據的完整性,「填補」的操作也是另一種常見的方式,本文將說明資料清理中有關填補的操作方法,內容包含: 常數填補 統...
在進行資料專案時,模型是基於數學設計的,有些資料型態不適合模型存取,為了提高數據的可用性和模型的處理,本文將以案例說明如何進行資料型態轉換,內容包含: 介...
在昨天標籤編碼法(Label Encoding)的舉例中,我們可以透過 sklearn 中的函數 LabelEncoder 將類別型態轉為數值型態,那大家是...
在茫茫數據海當中,資料散布在各種不同的地方,可能是資料庫、網站、文件等,為了要有效統一資料集,方便後續的分析和報告,資料合併的操作是不可不學的,以下將以案例...
在大型數據當中,有時我們會需要透過群組的方式概括整體資料,除了用以觀察之外,也能進一步深入處理,本文將分享如何使用資料的分組和聚合操作,內容包含: 資料分...
Excel 本身提供方便的樞紐分析,但你有想過用程式該如何撰寫嗎?今天就來分享一下 Pandas 中的樞紐分析:pivot_table( ) 一起透過交叉分...
VS Code 的使用者應該有發現 Pandas 的輸出結果有時並不是那麼好閱讀,對於一個有版面強迫症的我來說,曾經因為 DataFrame 歪掉的格式十分...