本系列以「肝癌資料視覺化與 AI 預測」為主題,帶領讀者完成一個從零開始的資料科學專案。內容包含環境建置、資料清理、視覺化與模型訓練,最後在 Grafana 平台整合呈現。過程中將利用 Docker 安裝 Grafana,並以 Python Pandas 處理肝癌資料,輸出乾淨的 CSV 檔。接著透過 Grafana CSV Plugin 建立互動式儀表板,展示資料特徵與統計結果。同時會示範如何使用 Scikit-learn 建立 AI 預測模型,並將結果回饋至 Grafana。透過這 30 天的實作,讀者將學會如何結合資料科學與視覺化工具,打造可應用於醫療與決策的 AI 平台。
1. 準備多個病人資料在 PostgreSQL 裡插入幾位病人的測試資料: INSERT INTO cancer_patients (patient_id, r...