藉由本次大賽的贊助,學習Google提供的Machine Learning(ML)
看看30天,自己可以往前多遠
本篇要學習靜態和動態推理,這是在機器學習中所要選擇的兩種不同推理。 文章:Static vs. Dynamic Inference 在設計機器學習中,有一環要...
在程式開發中,對於程式的品質非常重要,我們有各個種測試方式測試,最常用的就是單元測試(Unit test)。但是機器學習沒有這樣的機制,只能用直接輸入數據,直接...
人對於自己在意的東西都會有所偏頗,可能在給予資料的時候就在不知不覺中進行篩選。要如何維持中立,不偏頗呢?這就是本篇所要探討的重點。 文章:Fairness 在...
在資料中有哪些偏見會產生呢?讓我們看下去 文章:Fairness: Identifying Bias Missing Feature Values:我們的...
在評估模型的時候,會發現模型與結果有誤差,模型無法針對我們的測試集反映出真正結果,這就是評估的偏差(evaluating for bias)。這時候就是需要用到...
進入遊戲區體驗Fairness的機器學習,將會練習之前所說的不同的差異以及用子組合,來評估模型性能。 文章 (本篇分成兩章文章) 開始前 資料:用成人普查收入...
現在使用TensorFlow來訓練我們的這個模組。 以下會有幾個步驟:開始準備、製作特徵、以年齡當做分類的特徵、定義模型特徵、訓練深度神經網路模型、評估神經網路...
開始說明機器學習與現實世界的互動,本篇說明癌症預測 文章:ML Systems in the Real World: Cancer Prediction Go...
google和研究文學的教授一同研究,看能不能用隱喻的作品資料,去預測作者的政治傾向。在完成模型後,他們發現準確率超高,到底是為什麼呢? 文章:ML Syste...
案例說明中,google有提供以下的建議:(文章:ML Systems in the Real World: Guidelines) (列表中會提供相近的本系列...