可以用來降維(dimension reduction),利用原有的特徵組合成新的特徵組,以達到降維的目的,同時保留住資料中的重要資訊 基本上它的目標就是將...
利用弱分類器(決策樹)迭代訓練或得強分類器,其具有訓練效果好、不易過擬合等優點。 LightGBM V.S. XGBoost 圖源: https://re...
是一種基於機率的分類器 貝氏定理 Bayes’ Theorem 計算在已知一些條件下,某事件的發生機率 通常事件A在事件B已發生的條件下發生的機率,與...
是一種決策樹 決策樹 根據特徵進行分割(同子集內盡量相似) 重複分割直到達到設定的深度 建構決策樹 對決策樹進行遍歷,得出結果 CART流程 所有的樹...
CNN的概念圖如下: ( 圖片來源:https://reurl.cc/l7g1LY ) Convolution Layer 卷積層 卷積的主要概念就是特徵擷...
今天是大概的概念,training等細節留到明天 VGG-16 SSD的架構是使用VGG-16 13個卷積層+3個全連接層+5個池化層 其卷基層均使用...
接續作天,今天講訓練相關策略及方法 training Matching strategy 匹配策略 利用jaccard overlap使ground tr...
再續昨天!今天的筆記把論文剩餘的部分整理完 Hard negative mining 難例挖掘 由於存在大量的負樣本,所以導致嚴重的類別不平衡問題,訓練時...
29天啦!之前實作分類器的時候有用到混淆矩陣,今天也來寫一下相關筆記 混淆矩陣(confusion matrix) 可以用來評估分類模型的準確率 混淆...
這次的鐵人賽來到第30天啦,從一開始的機器學習簡單介紹到後來的一天一種演算法筆記,以及最後幾天的論文筆記,雖然我真的很努力的在逃避數學,但算是收穫良多,很可惜感...