前言 訓練好模型之後,就可以進行推論了!推論(Inference)指的是模型訓練完畢後,將資料集輸入訓練好的模型,去預測結果。使用的資料是新的、沒看過的資料,所...
前言 昨天介紹如何利用訓練好的模型進行推論,用一張影像來測試,如果準備了一份有許多影像的測試資料集,要怎麼推論呢?一張一張輸入效率太低了!今天要來介紹如何將測試...
前言 昨天介紹評估推論(或者測試)結果的方法,今天要來介紹混淆矩陣(Confusion Matrix)。混淆矩陣也是在分類問題上常被使用的評估方法,顯示預測結果...
前言 在學校寫作業或是研究所做研究,可能會較專注於模型的建構,但在業界,通常會將這些 AI 模型商品化,讓使用者可以更方便使用它們,例如透過 API 服務,讓使...
前言 昨天開始介紹 Web 應用框架 Flask,踏入了另一個領域!今天要來介紹第二個網頁應用框架 FastAPI,會使用與昨天類似的形式介紹 FastAPI,...
前言 前兩天介紹了使用兩種不同的網頁框架去製作 API,今天要來介紹使用 Gradio 來製作使用者介面,讓模型的使用可以更加直觀與便利。 Gradio Gra...
前言 一般我們在寫程式時,想要測試一下當前的輸出,或是顯示一些重要的資訊或數值,會使用類似像 print() 的方法,來顯示資訊,例如以本系列實作為例,原本我也...
前言 輸入訓練資料集的方法不只有一種,有時候取決於輸入資料的格式、套件的使用、資料處理的方法或模型的架構等等,例如同樣是影像作為輸入,就可以選擇不同的資料輸入方...
前言 在準備訓練資料時,可能會需要蒐集大量影像,在網頁上瀏覽到需要的影像時,最直接的方法為一張張手動儲存,但如果想要大量儲存,例如一整個頁面的影像都需要的話,這...
回顧本系列 這系列我們一起完成,從建立深度學習中的影像分類模型,到部署模型,以及學習日誌記錄和網路爬蟲技術等,要給完成的我們一個大大的掌聲👏 雖然影像分類模...