iT邦幫忙

2018 iT 邦幫忙鐵人賽
DAY 22
0
Data Technology

使用Python進行資料分析系列 第 22

[Day22]Bokeh更簡單的資料視覺化!

  • 分享至 

  • xImage
  •  

嗨嗨,來到第22天了!

今天要說明的是python中一個叫Bokeh的套件,在前面所提到的都是讓圖以靜態的方式呈現,而Bokeh則可以讓圖表呈現動態的樣子,像是可以用滑鼠拖曳或縮放!

主要內容:

  • Scatter plot
  • Single Lines
  • Multiple Lines
  • Bars
  • Multiple Patches

bokeh.plotting

首先,先import:

from bokeh.plotting import figure, show

Scatter plot

定義繪圖板寬高:

p = figure(plot_width=500, plot_height=500)

定義資料:

x = [1,2,3,4,5,6,7,8,9,10,11]
y = [6,3,7,2,4,6,1,2,3,5,6]

將資料放到圖上並顯示:

p.circle(x, y, size=20, color="gray", alpha=0.6)
show(p)

Imgur

Single Lines

定義繪圖板寬高:

p = figure(plot_width=500, plot_height=500)

定義資料:

x = [1,2,3,4,5,6,7,8,9,10,11]
y = [6,3,4,2,5,2,5,1,3,5,4]

唯一的差別是line()

p.line(x, y, line_width=3)
show(p)

Imgur

Multiple Lines

定義繪圖板寬高:

p = figure(plot_width=500, plot_height=500)

定義資料:

x1 = [1, 2, 3]
x2 = [2, 3, 4, 5, 6]
y1 = [3, 2, 5]
y2 = [3, 2, 4, 1, 3]

使用multi_line()

p.multi_line([x1,x2] , [y1, y2],
             color=["firebrick", "navy"], alpha=[0.8, 0.3], line_width=5)
show(p)

Imgur

Bars

使用vbar

p = figure(plot_width=500, plot_height=500)
p.vbar(x=[1, 2, 3, 4], width=0.5, bottom=0,
       top=[1.2, 2.5, 3.7, 2.9], color="black",alpha=0.4)
show(p)

Imgur

Multiple Patches

使用patches

p = figure(plot_width=500, plot_height=500)
x1 = [1, 4, 5, 2]
x2 = [3, 4, 5, 6]
x3 = [1,3,2]
y1 = [2, 3, 5, 6]
y2 = [4, 7, 7, 5]
y3 = [7,8,5.5]
p.patches([x1,x2,x3 ], [y1,y2,y3],
          color=["black", "navy","firebrick"], alpha=[0.2, 0.2,0.3], line_width=2)

show(p)

Imgur

那這就是基本的使用Bokeh繪圖了!

參考資料:
bokeh.pydata.org


上一篇
[Day21]Pandas就能輕易將資料視覺化!
下一篇
[Day23]Beautiful Soup網頁解析!
系列文
使用Python進行資料分析30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言