今天是第二十二天我們可以寫一個人工智慧系統實現自動養魚的系統,以下是程式碼
魚缸監控系統:
複雜行為檢測與分析:
環境感測:
多模式餵食策略:
遠程監控與控制:
import cv2
import threading
def stream_camera(camera_id, window_name):
    cap = cv2.VideoCapture(camera_id)
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        cv2.imshow(window_name, frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
camera_threads = []
for i in range(3):  # 假設有3個攝像頭
    t = threading.Thread(target=stream_camera, args=(i, f'Camera {i}'))
    t.start()
    camera_threads.append(t)
for t in camera_threads:
    t.join()
import cv2
from yolonas import YOLOv8
# 初始化 YOLO-NAS 模型
model = YOLOv8("yolonas_large.pt")
def analyze_fish_behavior(video_path):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        results = model.predict(frame)
        for result in results:
            x1, y1, x2, y2, confidence, class_id = result
            label = model.class_names[class_id]
            
            # 畫出檢測框與標籤
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        cv2.imshow('Fish Behavior', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
# 假設視頻文件來自實時流
analyze_fish_behavior("fish_tank_stream.mp4")
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# 假設資料結構 [時間, 魚狀態, pH, 溫度, 溶氧量, 餵食量]
data = np.array([
    [1, 0.8, 7.5, 26, 8.0, 50],
    [2, 0.7, 7.6, 26.5, 8.1, 45],
    # 更多數據
])
# LSTM 模型設計
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(data.shape[1] - 1, 1)))
model.add(Dropout(0.2))
model.add(LSTM(64))
model.add(Dense(1, activation='linear'))
model.compile(optimizer='adam', loss='mse')
# 假設訓練數據
X = data[:, :-1].reshape((data.shape[0], data.shape[1] - 1, 1))
y = data[:, -1]
# 模擬訓練
model.fit(X, y, epochs=200, batch_size=32)
# 預測下一次的餵食量
future_environment = np.array([[3, 0.75, 7.7, 27, 8.2]]).reshape((1, 5, 1))
predicted_feeding = model.predict(future_environment)
print(f"預測餵食量: {predicted_feeding[0][0]}")
import RPi.GPIO as GPIO
import time
import Adafruit_DHT  # 假設使用 DHT22 感測器
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
# 假設使用 DHT22 來獲取環境溫濕度
def read_environment():
    humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT22, 4)
    return humidity, temperature
def feed_fish(amount):
    for _ in range(amount):
        GPIO.output(18, GPIO.HIGH)
        time.sleep(0.5)
        GPIO.output(18, GPIO.LOW)
        time.sleep(0.5)
# 獲取環境數據並餵食
humidity, temperature = read_environment()
print(f"環境溫度: {temperature}, 濕度: {humidity}")
predicted_feeding_amount = int(predicted_feeding[0][0])
feed_fish(predicted_feeding_amount)
你可以使用 Flask 或 Django 框架來建立一個 Web 應用,讓用戶可以通過瀏覽器或手機應用控制和監控餵魚系統。
from flask import Flask, render_template, request
import threading
app = Flask(__name__)
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/feed', methods=['POST'])
def feed():
    amount = int(request.form['amount'])
    threading.Thread(target=feed_fish, args=(amount,)).start()
    return f"正在餵食 {amount} 次。"
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)
魚缸監控系統:
複雜行為檢測與分析:
環境感測:
多模式餵食策略:
遠程監控與控制:
這部分代碼負責從多個攝像頭獲取視頻流並顯示。以下是詳細的代碼解釋:
import cv2
import threading
def stream_camera(camera_id, window_name):
    cap = cv2.VideoCapture(camera_id)
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        cv2.imshow(window_name, frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
camera_threads = []
for i in range(3):  # 假設有3個攝像頭
    t = threading.Thread(target=stream_camera, args=(i, f'Camera {i}'))
    t.start()
    camera_threads.append(t)
for t in camera_threads:
    t.join()
cv2.VideoCapture(camera_id):初始化攝像頭。cap.read():讀取攝像頭捕獲的畫面。cv2.imshow(window_name, frame):顯示畫面。threading.Thread 來並行處理多個攝像頭視頻流。這部分代碼負責使用 YOLO 模型進行魚的行為檢測:
import cv2
from yolonas import YOLOv8
# 初始化 YOLO-NAS 模型
model = YOLOv8("yolonas_large.pt")
def analyze_fish_behavior(video_path):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        results = model.predict(frame)
        for result in results:
            x1, y1, x2, y2, confidence, class_id = result
            label = model.class_names[class_id]
            
            # 畫出檢測框與標籤
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        cv2.imshow('Fish Behavior', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()
# 假設視頻文件來自實時流
analyze_fish_behavior("fish_tank_stream.mp4")
YOLOv8("yolonas_large.pt"):載入預訓練的 YOLO-NAS 模型。model.predict(frame):對每一幀進行物體檢測,返回檢測結果。這部分代碼使用 LSTM 模型來預測未來的餵食量:
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# 假設資料結構 [時間, 魚狀態, pH, 溫度, 溶氧量, 餵食量]
data = np.array([
    [1, 0.8, 7.5, 26, 8.0, 50],
    [2, 0.7, 7.6, 26.5, 8.1, 45],
    # 更多數據
])
# LSTM 模型設計
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(data.shape[1] - 1, 1)))
model.add(Dropout(0.2))
model.add(LSTM(64))
model.add(Dense(1, activation='linear'))
model.compile(optimizer='adam', loss='mse')
# 假設訓練數據
X = data[:, :-1].reshape((data.shape[0], data.shape[1] - 1, 1))
y = data[:, -1]
# 模擬訓練
model.fit(X, y, epochs=200, batch_size=32)
# 預測下一次的餵食量
future_environment = np.array([[3, 0.75, 7.7, 27, 8.2]]).reshape((1, 5, 1))
predicted_feeding = model.predict(future_environment)
print(f"預測餵食量: {predicted_feeding[0][0]}")
Sequential():建立 LSTM 模型。model.add(LSTM(...)):添加 LSTM 層來處理序列數據。model.fit(X, y):訓練模型。model.predict(future_environment):使用模型進行未來餵食量預測。這部分代碼控制餵食裝置,並讀取環境感測器數據:
import RPi.GPIO as GPIO
import time
import Adafruit_DHT  # 假設使用 DHT22 感測器
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
# 假設使用 DHT22 來獲取環境溫濕度
def read_environment():
    humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT22, 4)
    return humidity, temperature
def feed_fish(amount):
    for _ in range(amount):
        GPIO.output(18, GPIO.HIGH)
        time.sleep(0.5)
        GPIO.output(18, GPIO.LOW)
        time.sleep(0.5)
# 獲取環境數據並餵食
humidity, temperature = read_environment()
print(f"環境溫度: {temperature}, 濕度: {humidity}")
predicted_feeding_amount = int(predicted_feeding[0][0])
feed_fish(predicted_feeding_amount)
GPIO.setup(18, GPIO.OUT):設置 GPIO 腳位來控制餵食裝置。Adafruit_DHT.read_retry(...):讀取溫濕度數據。feed_fish(amount):根據預測餵食量來控制餵食裝置。這部分代碼設置了基本的 Flask Web 應用來遠程控制餵食:
from flask import Flask, render_template, request
import threading
app = Flask(__name__)
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/feed', methods=['POST'])
def feed():
    amount = int(request.form['amount'])
    threading.Thread(target=feed_fish, args=(amount,)).start()
    return f"正在餵食 {amount} 次。"
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)
Flask(__name__):初始化 Flask 應用。@app.route('/'):根路由,渲染首頁模板。@app.route('/feed', methods=['POST']):處理餵食請求。這個系統的設計涵蓋了從視頻監控、行為檢測、環境感測、餵食預測到遠程控制的全面功能。每個模塊都可以根據實際需要進行調整和擴展。