1. 修改資料庫結構
進入 PostgreSQL:
docker exec -it cancer-postgres psql -U admin -d cancer_db
新增欄位:
ALTER TABLE cancer_patients
ADD COLUMN afp_pred INT,
ADD COLUMN alt_pred INT;
2. 插入 AI 預測數據
假設我們有一個簡單的 AI 模型,會預測下一次檢查的 AFP / ALT:
UPDATE cancer_patients
SET afp_pred = 150, alt_pred = 32
WHERE patient_id = '001' AND record_date = '2025-08-01';
UPDATE cancer_patients
SET afp_pred = 190, alt_pred = 42
WHERE patient_id = '001' AND record_date = '2025-08-10';
UPDATE cancer_patients
SET afp_pred = 310, alt_pred = 65
WHERE patient_id = '001' AND record_date = '2025-08-20';
UPDATE cancer_patients
SET afp_pred = 480, alt_pred = 85
WHERE patient_id = '001' AND record_date = '2025-08-30';
檢查是否成功:
SELECT * FROM cancer_patients WHERE patient_id='001';
3. 在 Grafana 畫「實際 vs 預測」
新增一個 Panel → 查詢 SQL:
SELECT
record_date AS "time",
afp AS "AFP Actual",
afp_pred AS "AFP Predicted"
FROM cancer_patients
WHERE patient_id = '001'
ORDER BY record_date;
在圖表上會看到兩條線:
● AFP Actual (實際值) → 紅色折線
● AFP Predicted (預測值) → 虛線藍色折線
同樣可以做 ALT:
SELECT
record_date AS "time",
alt AS "ALT Actual",
alt_pred AS "ALT Predicted"
FROM cancer_patients
WHERE patient_id = '001'
ORDER BY record_date;
4. 成果
● 在同一張圖上,同時看到「實際數據」與「AI 預測結果」
● 可以觀察模型的準確度:
(1) 如果預測曲線接近實際曲線 → 模型表現好
(2) 如果差距大 → 模型需要改善
感謝作者的詳細教學,Grafana也能幫助醫療資料透明,實現AI人文融合。順祝創作者鐵人精神持續,大家一起完賽!歡迎支持並訂閱南桃AI重生記:https://ithelp.ithome.com.tw/users/20046160/ironman/8311