哈囉大家好我是10程式中的10!我是上一屆鐵人賽影片教學組[全民瘋AI系列]的作者,當時講解了人工智慧的基礎以及常見的機器學習演算法與手把手教學。由於大家反應很熱烈,讓我看到了大家對於AI的學習熱忱。因此我想藉由這一次鐵人賽將上一屆的影片內容整理成電子書版本,提供大家影片教學與文字版的筆記內容。在全新的[全民瘋AI系列2.0]中我會介紹實用的機器學習演算法並含有程式手把手實作,以及近年來熱門的機器學習套件與模型調參技巧。除此之外我還會提到大家最感興趣的AI模型落地與整合,以及模型訓練時所需要注意的大小事。希望在這次的鐵人賽能夠將AI的資源整理得更詳細並分享給各位。
核模型 - 支持向量機 (SVM) 今日學習目標 SVM 分類器 何謂支持向量機? 非線性與線性? 多元分類支持向量機。 SVR 迴歸器 學習 SVR...
決策樹 (Decision tree) 今日學習目標 決策樹演算法介紹 決策樹如何生成? 如何處理分類問題? 如何處理迴歸問題? 實作決策樹分類器 觀...
整體學習 (Ensemble Learning) 今日學習目標 了解整體學習 何謂整體學習? 三種不同的整體學習 Bagging、Boosting、S...
隨機森林 (Random forest) 今日學習目標 隨機森林介紹 隨機森林的樹是如何生成?隨機森林的優點? 隨機森林如何處理分類問題? 隨機森林如何處理...
XGBoost 今日學習目標 XGBoost 介紹 XGBoost 是什麼?為什麼它那麼強大? XGBoost 優點 比較兩種整體學習架構差異? Ba...
堆疊法 (Stacking) 今日學習目標 了解 Stacking 方法 堆疊法的學習機制為何? 利用 Stacking 實作迴歸器 透過 Stack...
LightGBM 今日學習目標 LightGBM 與 XGBoost 比較 了解 LightGBM 優點 實作 LightGBM 處理資料不平衡資料 信用卡...
CatBoost 今日學習目標 了解 CatBoost 模型 實作 CatBoost 迴歸模型-房價預測 模型訓練、特徵篩選 超參數搜索 自動處理類別型的特...
AutoML 今日學習目標 了解何謂 AutoML 超參數調參方法 Grid Search Random Search Bayesian Optimizat...
Auto-sklearn 今日學習目標 了解 Auto-sklearn 運作原理 Meta Learning Bayesian Optimization B...