iT邦幫忙

第 11 屆 iThome 鐵人賽

DAY 10
0

abstract

如題,簡介course 2


import

NULL


mynotes

  1. introduction to launching into ML
    • practical ML:

      • the code and the foundation knowledge
      • types of ML model
      • hystory
      • optimize ML model using loss function
      • common preoblem and how to mitigate
    • generalization:

      • how to create ML dataset
      • three identical distributed datasets and to create them in repeatbale way
    • optimization model:

      • gradient decent
      • performance metrics
      • Tensorflow playground

give yourself time to absorb the lessons

  1. introduction to Practical ML
  2. Supervised learning
  3. ML history
  4. Module quiz
  5. introduction to Optimization
  6. defining ML module
  7. introducing loss function
  8. gradient descent
  9. tensor flow playground
  10. performance metrics
  11. Module quiz
  12. introduction to Generalization and sampling
  13. gneralization
  14. sampling
  15. Demo of splitting datasets in bigquery
  16. lab: create creating repeatable datasets splits
  17. lab: exploring and creating ML dataset
  18. Module quiz
  19. summary

murmur

距離午夜僅剩少少的18分鐘,我才剛開始打文,手飛速在鍵盤上揮舞著,但腦袋卻跟不上,手只好不時停下來等他。
對不起各位,今天光顧著看課程影片,導致文章非常之簡陋
他在introduction就說:

give yourself time to absorb the lessons
我已經有點怕怕了ㄚㄚ 畢竟那是我最缺的ㄚㄚ
另外,三分之一了耶!!!


EOL


上一篇
Day09 course2 start! (big map of course2)
下一篇
Day last ...
系列文
finnish the google ML class11
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言