Don't say so much, just coding...
The maximum sum subarray problem consists in finding the maximum sum of a contiguous subsequence in an array or list of integers:
maxSequence [-2, 1, -3, 4, -1, 2, 1, -5, 4]
// should be 6: [4, -1, 2, 1]
Easy case is when the list is made up of only positive numbers and the maximum sum is the sum of the whole array. If the list is made up of only negative numbers, return 0 instead.
Empty list is considered to have zero greatest sum. Note that the empty list or array is also a valid sublist/subarray.
def max_sequence(arr)
#your code here
end
Test.describe("Tests") do
Test.assert_equals(max_sequence([]), 0)
Test.assert_equals(max_sequence([-2, 1, -3, 4, -1, 2, 1, -5, 4]), 6)
Test.assert_equals(max_sequence([11]), 11)
Test.assert_equals(max_sequence([-32]), 0)
Test.assert_equals(max_sequence([-2, 1, -7, 4, -10, 2, 1, 5, 4]), 12)
end
var maxSequence = function(arr){
// ...
}
describe( "maxSequence", function(){
it("should work on an empty array",function(){
Test.assertEquals(maxSequence([]), 0);
});
it("should work on the example",function(){
Test.assertEquals(maxSequence([-2, 1, -3, 4, -1, 2, 1, -5, 4]), 6);
});
});
想法(1): 透過迴圈從 1 ~ x
群來計算所有加總後,再來比較所有算出來的結果哪個是最大的。
想法(2): 需要考慮如果是空陣列,要塞 0
近陣列來跟 負數值
比最大的。
# Solution 1
def max_sequence(arr)
(1..arr.size).map { |i| arr.each_cons(i).map(&:sum) }
.flatten
.push(0)
.max
end
// Solution 1
var maxSequence = function(arr){
var maxSum = 0;
var currentSum = 0;
for (i = 0; i < arr.length; i++) {
currentSum += arr[i];
if (currentSum <= 0)
currentSum = 0
maxSum = Math.max(maxSum, currentSum);
}
return maxSum;
}