早上: Python機器學習套件與資料分析
今天也是練習CNN
import os
import cv2
parent_directory = './AfricanWildlife'
X = []
y = []
for folders in os.listdir('./AfricanWildlife'):
filepath = os.path.join(parent_directory, folders)
if not os.path.isdir(filepath):
continue
Category_index = os.listdir('./AfricanWildlife').index(folders)
print(Category_index)
for files in os.listdir(filepath):
if files.endswith('jpg'):
filename = os.path.join(filepath, files)
image = cv2.imread(filename)
image_resized = cv2.resize(image, (128,128))
X.append(image_resized)
y.append(Category_index)
import numpy as np
X = np.array(X).astype(np.float32)/255
y = np.array(y)
# 切分訓練&測試集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=1)
# 建立網路
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, MaxPooling2D, Flatten
AW_Model = Sequential()
AW_Model.add(Conv2D(64,(5,5), activation='relu', input_shape=(128,128,3)))
AW_Model.add(MaxPooling2D(2))
AW_Model.add(Conv2D(32,(5,5), activation='relu'))
AW_Model.add(MaxPooling2D(2))
AW_Model.add(Conv2D(16,(5,5), activation='relu'))
AW_Model.add(MaxPooling2D(2))
AW_Model.add(Flatten())
AW_Model.add(Dense(32, activation='relu'))
AW_Model.add(Dense(4, activation='softmax'))
AW_Model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
AW_Model.fit(X_train, y_train, epochs=5, batch_size=28, validation_data=(X_test, y_test))
結果不盡理想,應該是參數或是網路架構要再調整
下午: Pytorch 與深度學習初探
######################### step1: load data (generate) ############
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from torchvision import datasets, transforms
from torchsummary import summary
t1=transforms.Resize((28,28))
t2=transforms.ToTensor()
t3=transforms.Normalize((0.5,),(0.5,))
transform=transforms.Compose([t1,t2,t3])
train_data= datasets.MNIST(root='./data',train=True, download=True, transform=transform)
validate_data=datasets.MNIST(root='./data',train=False, download=True, transform=transform)
print(len(train_data),type(train_data))
print(len(validate_data),type(validate_data))
train_loader=torch.utils.data.DataLoader(train_data, batch_size=100,shuffle=True)
validation_loader=torch.utils.data.DataLoader(validate_data,batch_size=100,shuffle=False)
print(len(train_loader),type(train_loader))
print(len(validation_loader),type(validation_loader))
def im_convert(tensor):
image = tensor.clone().detach().numpy()
image = image.transpose(1, 2, 0)
image = image * np.array((0.5, 0.5, 0.5)) + np.array((0.5, 0.5, 0.5))
image = image.clip(0, 1)
return image
dataiter = iter(train_loader)
images, labels = dataiter.next()
fig = plt.figure(figsize=(25, 4))
for idx in np.arange(20):
ax = fig.add_subplot(2, 10, idx+1, xticks=[], yticks=[])
plt.imshow(im_convert(images[idx]))
ax.set_title([labels[idx].item()])
########################### step3: build model ############
class myDNN(nn.Module):
def __init__(self,numIn,numH1,numH2,numOut):
super(myDNN,self).__init__()
self.layer1=torch.nn.Linear(numIn,numH1)
self.layer2=torch.nn.Linear(numH1,numH2)
self.layer3=torch.nn.Linear(numH2,numOut)
def forward(self,x):
x=F.relu(self.layer1(x))
x=F.relu(self.layer2(x))
yProb=self.layer3(x)
return yProb
model=myDNN(784,256,64,10)
print(model)
#backward path
criterion= nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=0.0001)#advance 2:lr=0.0001
############################ step4: traing model############
epochs = 15
running_loss_history = []
running_corrects_history = []
val_running_loss_history = []
val_running_corrects_history = []
for e in range(epochs):
running_loss = 0.0
running_corrects = 0.0
val_running_loss = 0.0
val_running_corrects = 0.0
for inputs, labels in train_loader:
inputs = inputs.view(inputs.shape[0], -1)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item()
running_corrects += torch.sum(preds == labels.data)
else:
with torch.no_grad():
for val_inputs, val_labels in validation_loader:
val_inputs = val_inputs.view(val_inputs.shape[0], -1)
val_outputs = model(val_inputs)
val_loss = criterion(val_outputs, val_labels)
_, val_preds = torch.max(val_outputs, 1)
val_running_loss += val_loss.item()
val_running_corrects += torch.sum(val_preds == val_labels.data)
epoch_loss = running_loss/len(train_loader)
epoch_acc = running_corrects.float()/ len(train_loader)
running_loss_history.append(epoch_loss)
running_corrects_history.append(epoch_acc)
val_epoch_loss = val_running_loss/len(validation_loader)
val_epoch_acc = val_running_corrects.float()/ len(validation_loader)
val_running_loss_history.append(val_epoch_loss)
val_running_corrects_history.append(val_epoch_acc)
print('epoch :', (e+1))
print('training loss: {:.4f}, acc {:.4f} '.format(epoch_loss, epoch_acc.item()))
print('validation loss: {:.4f}, validation acc {:.4f} '.format(val_epoch_loss, val_epoch_acc.item()))