上午: AIoT資料分析應用系統框架設計與實作
今日運用Django架設Framework,只完成一部份,下次課程會繼續完成,畫面如下:
下午: Pytroch與深度學習初探
使用CNN建構網路,預測MNIST
######################### step1: load data (generate) ############
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from torchvision import datasets, transforms
#Assign cuda GPU located at location '0' to a variable
# device= torch.device('cuda:0')
print(torch.cuda.device_count())
print(torch.cuda.get_device_name(0))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
t1=transforms.Resize((28,28))
t2=transforms.ToTensor()
t3=transforms.Normalize((0.5,),(0.5,))
transform=transforms.Compose([t1,t2,t3])
train_data= datasets.MNIST(root='./data',train=True, download=True, transform=transform)
validate_data=datasets.MNIST(root='./data',train=False, download=True, transform=transform)
print(len(train_data),type(train_data))
print(len(validate_data),type(validate_data))
train_loader=torch.utils.data.DataLoader(train_data, batch_size=100,shuffle=True)
validation_loader=torch.utils.data.DataLoader(validate_data,batch_size=100,shuffle=False)
print(len(train_loader),type(train_loader))
print(len(validation_loader),type(validation_loader))
def im_convert(tensor):
image = tensor.clone().detach().numpy()
image = image.transpose(1, 2, 0)
image = image * np.array((0.5, 0.5, 0.5)) + np.array((0.5, 0.5, 0.5))
image = image.clip(0, 1)
return image
dataiter = iter(train_loader)
images, labels = dataiter.next()
fig = plt.figure(figsize=(25, 4))
for idx in np.arange(20):
ax = fig.add_subplot(2, 10, idx+1, xticks=[], yticks=[])
plt.imshow(im_convert(images[idx]))
ax.set_title([labels[idx].item()])
########################### step3: build model ############
class LeNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.dropout1 = nn.Dropout(0.5)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.dropout1(x)
x = self.fc2(x)
return x
model=LeNet().to(device)
print(model)
# class myDNN(nn.Module):
# def __init__(self,numIn,numH1,numH2,numOut):
# super(myDNN,self).__init__()
# self.layer1=torch.nn.Linear(numIn,numH1)
# self.layer2=torch.nn.Linear(numH1,numH2)
# self.layer3=torch.nn.Linear(numH2,numOut)
# def forward(self,x):
# x=F.relu(self.layer1(x))
# x=F.relu(self.layer2(x))
# yProb=self.layer3(x)
# return yProb
# model=myDNN(784,256,64,10)
#backward path
criterion= nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=0.0001)#advance 2:lr=0.0001
############################ step4: traing model############
epochs = 15
running_loss_history = []
running_corrects_history = []
val_running_loss_history = []
val_running_corrects_history = []
for e in range(epochs):
running_loss = 0.0
running_corrects = 0.0
val_running_loss = 0.0
val_running_corrects = 0.0
for inputs, labels in train_loader:
inputs = inputs.to(device)
labels= labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item()
running_corrects += torch.sum(preds == labels.data)
else:
with torch.no_grad():
for val_inputs, val_labels in validation_loader:
val_inputs = val_inputs.to(device)
val_labels = val_labels.to(device)
val_outputs = model(val_inputs)
val_loss = criterion(val_outputs, val_labels)
_, val_preds = torch.max(val_outputs, 1)
val_running_loss += val_loss.item()
val_running_corrects += torch.sum(val_preds == val_labels.data)
epoch_loss = running_loss/len(train_loader)
epoch_acc = running_corrects.float()/ len(train_loader)
running_loss_history.append(epoch_loss)
running_corrects_history.append(epoch_acc)
val_epoch_loss = val_running_loss/len(validation_loader)
val_epoch_acc = val_running_corrects.float()/ len(validation_loader)
val_running_loss_history.append(val_epoch_loss)
val_running_corrects_history.append(val_epoch_acc)
print('epoch :', (e+1))
print('training loss: {:.4f}, acc {:.4f} '.format(epoch_loss, epoch_acc.item()))
print('validation loss: {:.4f}, validation acc {:.4f} '.format(val_epoch_loss, val_epoch_acc.item()))