在資料庫的日常使用,會有將schema下的table結構複製到另一schema下,供做測試,或是做移轉等需求.
為方便說明,將建立三個 schema
create schema myfunc;
create schema s0822;
create schema t0822;
create table s0822.t001 (
id int generated always as identity primary key
, txt text not null
);
create table s0822.t002 (
id int generated always as identity primary key
, t001_id int not null references s0822.t001(id)
, txt text not null
);
create or replace function myfunc.f_get_schema_tables (
in in_schema text
, out relname text
)
returns setof text
language sql as
$code$
select c.relname::text
from pg_class c
join pg_namespace n
on c.relnamespace = n.oid
where n.nspname::text = in_schema
and c.relkind = 'r'
order by 1;
$code$;
create or replace procedure myfunc.p_clone_schmea_tables (
in source_schema text
, in target_schema text
)
language plpgsql as
$code$
declare
curs cursor for select relname from myfunc.f_get_schema_tables(source_schema);
rel text;
begin
open curs;
loop
fetch curs into rel;
exit when not found;
execute 'create table if not exists '
|| target_schema || '.' || rel
|| ' (like ' || source_schema || '.' || rel
|| ' including all)';
end loop;
close curs;
end;
$code$;
call myfunc.p_clone_schmea_tables('s0822', 't0822');
\dt s0822.*
List of relations
Schema | Name | Type | Owner
--------+------+-------+-------
s0822 | t001 | table | nana
s0822 | t002 | table | nana
(2 rows)
\dt t0822.*
List of relations
Schema | Name | Type | Owner
--------+------+-------+-------
t0822 | t001 | table | nana
t0822 | t002 | table | nana
(2 rows)
\d s0822.t001
Table "s0822.t001"
Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+------------------------------
id | integer | | not null | generated always as identity
txt | text | | not null |
Indexes:
"t001_pkey" PRIMARY KEY, btree (id)
Referenced by:
TABLE "s0822.t002" CONSTRAINT "t002_t001_id_fkey" FOREIGN KEY (t001_id) REFERENCES s0822.t001(id)
\d t0822.t001
Table "t0822.t001"
Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+------------------------------
id | integer | | not null | generated always as identity
txt | text | | not null |
Indexes:
"t001_pkey" PRIMARY KEY, btree (id)
\d s0822.t002
Table "s0822.t002"
Column | Type | Collation | Nullable | Default
---------+---------+-----------+----------+------------------------------
id | integer | | not null | generated always as identity
t001_id | integer | | not null |
txt | text | | not null |
Indexes:
"t002_pkey" PRIMARY KEY, btree (id)
Foreign-key constraints:
"t002_t001_id_fkey" FOREIGN KEY (t001_id) REFERENCES s0822.t001(id)
\d t0822.t002
Table "t0822.t002"
Column | Type | Collation | Nullable | Default
---------+---------+-----------+----------+------------------------------
id | integer | | not null | generated always as identity
t001_id | integer | | not null |
txt | text | | not null |
Indexes:
"t002_pkey" PRIMARY KEY, btree (id)
注意到除了 Foreign key constraints 是都複製了.
因為我們是使用了 like INCLUDING ALL
細節可以參考官網文件
https://www.postgresql.org/docs/current/sql-createtable.html
create table s0822.t (
a integer
, b text
, c boolean
);
select setseed(0.5);
insert into s0822.t
with r as (
select id
, chr((32+random()*94)::integer)
, random() < 0.01
from generate_series(1, 1e5) as s(id)
)
select *
from r
order by random();
analyze s0822.t;
select attname
, correlation
from pg_stats
where schemaname = 's0822'
and tablename = 't';
attname | correlation
---------+--------------
a | 0.0044361027
b | 0.0063023297
c | 0.9826269
(3 rows)
使用 like 方法, 但不使用 including all
create table t0822.t1 (
like s0822.t
);
create table t0822.t2 (
like s0822.t
);
create table t0822.t3 (
like s0822.t
);
create table t0822.t4 (
like s0822.t
);
https://www.postgresql.org/docs/current/sql-select.html
TABLESAMPLE sampling_method ( argument [, ...] ) [ REPEATABLE ( seed ) ]
insert into t0822.t1
select *
from s0822.t
tablesample system(10);
insert into t0822.t2
select *
from s0822.t
tablesample bernoulli(10);
INSERT 0 9987
Time: 17.633 ms
analyze t0822.t1;
analyze t0822.t2;
select attname
, correlation
from pg_stats
where schemaname = 't0822'
and tablename = 't1'
order by 1;
attname | correlation
---------+---------------
a | -0.0044052443
b | 0.0011416585
c | 0.9800325
(3 rows)
select attname
, correlation
from pg_stats
where schemaname = 't0822'
and tablename = 't2'
order by 1;
attname | correlation
---------+---------------
a | 0.00066867325
b | 0.023340156
c | 0.98007065
(3 rows)
a 是 id,遞增, 取樣後相關性就差異很大,是正常現象.
b, c 欄位的相關性, c 原本是 random() < 0.01 方式產生,
b 原本是 chr((32+random()*94)::integer) 方式產生,
可以觀察到兩種取樣方式與原始table在統計值上的接近程度.
但是要知道 pg_stat 的相關性,也是抽樣的,並不是 100%.
以官方文件的說法, bernoulli method 會慢一些,但是效果會
好一些.另外可以參考官網文件以及古博士的分享.
https://island.postgresql.tw/2018/07/24/tablesample.html
另外還有 REPEATABLE, 這是讓我們可以設定取樣時的亂數種子,進而可以重現.
insert into t0822.t3
select *
from s0822.t
tablesample bernoulli(20) REPEATABLE(100);
INSERT 0 20075
Time: 23.151 ms
insert into t0822.t4
select *
from s0822.t
tablesample bernoulli(20) REPEATABLE(100);
INSERT 0 20075
Time: 22.981 ms
---
analyze t0822.t3;
analyze t0822.t4;
select attname
, correlation
from pg_stats
where schemaname = 't0822'
and tablename = 't3'
order by 1;
attname | correlation
---------+--------------
a | 0.0013938936
b | 0.002332309
c | 0.98037195
(3 rows)
select attname
, correlation
from pg_stats
where schemaname = 't0822'
and tablename = 't4'
order by 1;
attname | correlation
---------+--------------
a | 0.0013938936
b | 0.002332309
c | 0.98037195
(3 rows)
可以觀察到,使用了同樣亂數種子,會取樣相同.
透過今天介紹的功能,對我們要做資料庫的資料移轉測試,驗證查詢方式的改善測試,結合運用,能夠方便及有效驗證.