the limit of f(x) as x approaches a is L
$$
\lim_{x \to a}f(x)=L
$$
if for every number ε>0 there is a corresponding number δ>0 such that
$$
if \quad 0<|x-a|<δ \quad then \quad |f(x)-L|<ε
$$
(∀ε>0, ∃ δ>0 s.t. 0<|x-a|<δ implies |f(x)−L|<ε)
the limit of f(x) as x approaches a is ∞
$$
\lim_{x \to a}f(x)=∞
$$
means that for every position number M there is a position number δ such that
$$
if \quad 0<|x-a|<δ \quad then \quad f(x)>M
$$
(∀M>0, ∃ δ>0 s.t. 0<|x-a|<δ implies f(x)>M)
寫程式的門檻不算太高[name=白惠明]
A function f is continuous at a number a if
$$
\lim_{x \to a} f(x) = f(a)
$$
$$
\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))
$$
若f為連續且f(a)≠f(b),則f由f(a)移至f(b)必經過中間所有數值