iT邦幫忙

第 11 屆 iThome 鐵人賽

DAY 24
0
Google Developers Machine Learning

ML Study Jam Journey系列 第 24

Day 24 Art and Science of Machine Learning (cont.)

  • 分享至 

  • xImage
  •  

ML models

  • Parameters - Change during training
  • Hyper-parameters - Set before training

ROC curve - Choose the decision threshold based on decision criteria
AUC - Provides total measure of performance across all possible classification thresholds

Three common failure modes for gradient descent

  • Gradients can vanish - Use ReLu instead of sigmoid/tanh
  • Gradients can explode - Batch Normalization
  • ReLu layers can die - Lower learning rates

上一篇
Day 23 Art and Science of Machine Learning (cont.)
下一篇
Day 25 Art and Science of Machine Learning (cont.)
系列文
ML Study Jam Journey30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言