iT邦幫忙

第 11 屆 iThome 鐵人賽

DAY 28
0

Introduction

Train an ML model with examples (Training)

  • label - true answer
  • model - mathematical function

Key things to measure how inclusive a machine learning system is

  • Equality of Opportunity
  • Simulating Decisions
  • Finding Errors in your dataset using Facets

Launching into ML

Defining ML Models

  • Parameter - real-valued variable that changes during model training
  • Hyper-parameter - setting that we set before training and doesn't change afterwards

上一篇
Day 27 Art and Science of Machine Learning (cont.)
下一篇
Day 29 Summary (cont.)
系列文
ML Study Jam Journey30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言