iT邦幫忙

第 12 屆 iThome 鐵人賽

DAY 7
0
DevOps

30 Days of MLOps系列 第 7

解析 Tensorflow Serving 的 Docker file - 30 Days of MLOps

  • 分享至 

  • xImage
  •  

docker hub: https://hub.docker.com/r/tensorflow/serving/tags/

git clone https://github.com/tensorflow/serving
cd serving/tensorflow_serving/tools/docker

以 ubuntu 18.04 為映像檔基底

FROM ubuntu:18.04

略過一些預設的套件

--no-install-recommends

安裝 Tensorflow Serving Serving 套件,複製 /usr/local/bin/tensorflow_model_server/usr/bin/tensorflow_model_server

COPY --from=build_image /usr/local/bin/tensorflow_model_server /usr/bin/tensorflow_model_server

指定 MODEL_BASE_PATH 位置

ENV MODEL_BASE_PATH=/models

建立資料夾

RUN mkdir -p ${MODEL_BASE_PATH}

設定模組名稱

ENV MODEL_NAME=model

產生 tf_serving_entrypoint.sh 檔,script 裡面的內容是

#!/bin/bash
tensorflow_model_server --port=8500 --rest_api_port=8501
--model_name=${MODEL_NAME} --model_base_path=${MODEL_BASE_PATH}/${MODEL_NAME}
RUN echo '#!/bin/bash \n\n\
tensorflow_model_server --port=8500 --rest_api_port=8501 \
--model_name=${MODEL_NAME} --model_base_path=${MODEL_BASE_PATH}/${MODEL_NAME} \
"$@"' > /usr/bin/tf_serving_entrypoint.sh \
&& chmod +x /usr/bin/tf_serving_entrypoint.sh

啟動 /usr/bin/tf_serving_entrypoint.sh

ENTRYPOINT ["/usr/bin/tf_serving_entrypoint.sh"]

ENTRYPOINT:和 CMD 一樣,用來設定映像檔啟動 Container 時要執行的指令,但不同的是,ENTRYPOINT 一定會被執行,而不會有像 CMD 覆蓋的情況發生。

完整的 Dockerfile 檔案

ARG TF_SERVING_VERSION=latest
ARG TF_SERVING_BUILD_IMAGE=tensorflow/serving:${TF_SERVING_VERSION}-devel

FROM ${TF_SERVING_BUILD_IMAGE} as build_image
FROM ubuntu:18.04

ARG TF_SERVING_VERSION_GIT_BRANCH=master
ARG TF_SERVING_VERSION_GIT_COMMIT=head

LABEL maintainer="gvasudevan@google.com"
LABEL tensorflow_serving_github_branchtag=${TF_SERVING_VERSION_GIT_BRANCH}
LABEL tensorflow_serving_github_commit=${TF_SERVING_VERSION_GIT_COMMIT}

RUN apt-get update && apt-get install -y --no-install-recommends \
        ca-certificates \
        && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

# Install TF Serving pkg
COPY --from=build_image /usr/local/bin/tensorflow_model_server /usr/bin/tensorflow_model_server

# Expose ports
# gRPC
EXPOSE 8500

# REST
EXPOSE 8501

# Set where models should be stored in the container
ENV MODEL_BASE_PATH=/models
RUN mkdir -p ${MODEL_BASE_PATH}

# The only required piece is the model name in order to differentiate endpoints
ENV MODEL_NAME=model

# Create a script that runs the model server so we can use environment variables
# while also passing in arguments from the docker command line
RUN echo '#!/bin/bash \n\n\
tensorflow_model_server --port=8500 --rest_api_port=8501 \
--model_name=${MODEL_NAME} --model_base_path=${MODEL_BASE_PATH}/${MODEL_NAME} \
"$@"' > /usr/bin/tf_serving_entrypoint.sh \
&& chmod +x /usr/bin/tf_serving_entrypoint.sh

ENTRYPOINT ["/usr/bin/tf_serving_entrypoint.sh"]

https://github.com/tensorflow/serving/blob/master/tensorflow_serving/tools/docker/Dockerfile

參考來源


上一篇
客製化 Docker 容器 - 30 Days of MLOps
下一篇
Serving 多個 Model - 30 Days of MLOps
系列文
30 Days of MLOps23
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言