iT邦幫忙

2024 iThome 鐵人賽

DAY 12
0
DevOps

將 AI Code Review 整進 CICD系列 第 12

將 AI Code Review 整進 CICD Day11

  • 分享至 

  • xImage
  •  

將 AI Code Review 整進 CICD Day11

昨天我們從 PRReviewer 追到了 auto_approve 的應用,今天繼續往下看。接下來會進行一個 prediction 的測試。先從 setting 獲取全部的 model,然後將 model 餵給 prediction ,如果有成功,就繼續往下,沒有,就會移除 inital_comment。以下慢慢拆解

await retry_with_fallback_models(self._prepare_prediction)
if not self.prediction:
    self.git_provider.remove_initial_comment()
    return None

retry_with_fallback_models 看起來是測試模型,測試查找看有沒有正常運作。他會先拿到全部的 model 跟 deployments(來自 model)。iterater Model 跟 deployment 試 run f(),直到成功。這邊的 f() 來自上面傳入的 self._prepare_prediction。self._prepare_prediction 會藉由 get_pr_diff 拿到 diff

async def retry_with_fallback_models(f: Callable, model_type: ModelType = ModelType.REGULAR):
    all_models = _get_all_models(model_type)
    all_deployments = _get_all_deployments(all_models)
    # try each (model, deployment_id) pair until one is successful, otherwise raise exception
    for i, (model, deployment_id) in enumerate(zip(all_models, all_deployments)):
        try:
            get_logger().debug(
                f"Generating prediction with {model}"
                f"{(' from deployment ' + deployment_id) if deployment_id else ''}"
            )
            get_settings().set("openai.deployment_id", deployment_id)
            return await f(model)
        except:
            get_logger().warning(
                f"Failed to generate prediction with {model}"
                f"{(' from deployment ' + deployment_id) if deployment_id else ''}: "
                f"{traceback.format_exc()}"
            )
            if i == len(all_models) - 1:  # If it's the last iteration
                raise  # Re-raise the last exception


async def _prepare_prediction(self, model: str) -> None:
  self.patches_diff = get_pr_diff(self.git_provider,
                                  self.token_handler,
                                  model,
                                  add_line_numbers_to_hunks=True,
                                  disable_extra_lines=True,)

  if self.patches_diff:
      get_logger().debug(f"PR diff", diff=self.patches_diff)
      self.prediction = await self._get_prediction(model)
  else:
      get_logger().error(f"Error getting PR diff")
      self.prediction = None

model 則是從 starlette_context's context 的 context["settings"]來的



def _get_all_models(model_type: ModelType = ModelType.REGULAR) -> List[str]:
    if model_type == ModelType.TURBO:
        model = get_settings().config.model_turbo
    else:
        model = get_settings().config.model
    fallback_models = get_settings().config.fallback_models
    if not isinstance(fallback_models, list):
        fallback_models = [m.strip() for m in fallback_models.split(",")]
    all_models = [model] + fallback_models
    return all_models


def get_settings():
    """
    Retrieves the current settings.

    This function attempts to fetch the settings from the starlette_context's context object. If it fails,
    it defaults to the global settings defined outside of this function.

    Returns:
        Dynaconf: The current settings object, either from the context or the global default.
    """
    try:
        return context["settings"]
    except Exception:
        return global_settings

我很好奇這邊的 prediction 是什麼,因為我想像下一步 pr_review 才會帶出我們所認知到 AI 解答,所以明天要來看 ai handler

await retry_with_fallback_models(self._prepare_prediction)
if not self.prediction:
    self.git_provider.remove_initial_comment()
    return None

pr_review = self._prepare_pr_review()

上一篇
將 AI Code Review 整進 CICD Day11
下一篇
將 AI Code Review 整進 CICD Day13
系列文
將 AI Code Review 整進 CICD28
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言