Travelling salesman problem 簡稱 TSP,也有人翻譯成「旅行業務員問題」,是演算法非常經典的問題,簡單來說,就是我們可以假想成一個業務員,或推銷員,有一連串的客戶需要拜訪,因此需要決定一個最佳的順序,以節省時間或旅行距離。
使用 Google 搜尋「Travelling salesman problem」,就可以看到很多的圖片解說:
在實際生活的場景中,我們其實有很多的機會遇到這樣的問題,例如,在規劃自助旅行的時候的景點順序;或是跟同事約共乘要決定接人的順序;或是逢年過節要到許多客戶那邊送禮物等等。很多時候,要怎麼決定先後順序都是很重要的問題。
HERE 提供的 Waypoints Sequence API 就是用來解決這個問題的產品。這個產品的主要特色有:
以下我們就來進行實做。不過您必須要有 HERE 開發者帳號,以及一個有效的 HERE APIKEY,您可以參閱 快速建構地圖服務 - 使用 HERE Studio / Data Hub(一) 以及 快速建構地圖服務 - 使用 HERE Studio / Data Hub(四) 的內容來申請 HERE 開發者帳號以及產生一個有效的 APIKEY。
取得 APIKEY 之後,我們可以進行一個非常簡單的目的地排序的請求,沒有特殊需求的狀況下,只要輸入每個地點的經緯度就可以了,我們從台北車站(25.04717 121.51706)出發,並且出發到台北市的三個地點,分別是destination1-3:
https://wse.ls.hereapi.com/2/findsequence.json?
start=25.04717,121.51706
&destination1=25.04985,121.57717
&destination2=25.03314,121.5669
&destination3=25.02665,121.53461
&mode=fastest;car
&apiKey={API_KEY}
回傳的結果會像這樣,您可以看到,最佳的順序是從 start 開始後,先前往 destination3,再前往 destination2,最後才是 destination1。在下方的「distance」就告訴您整趟行程跑完的路程長度是 11829 公尺,「time」也又是時間,總共耗費 1607 秒。
另外,每一個目的地之間的移動時間與距離也都詳細列出,例如第一段旅程從 start 到 destination3 的移動距離是 4368.0 公尺,時間為 570.0 秒。
{
"results": [
{
"waypoints": [
{
"id": "start",
"lat": 25.04717,
"lng": 121.51706,
"sequence": 0,
"estimatedArrival": null,
"estimatedDeparture": null,
"fulfilledConstraints": []
},
{
"id": "destination3",
"lat": 25.02665,
"lng": 121.53461,
"sequence": 1,
"estimatedArrival": null,
"estimatedDeparture": null,
"fulfilledConstraints": []
},
{
"id": "destination2",
"lat": 25.03314,
"lng": 121.5669,
"sequence": 2,
"estimatedArrival": null,
"estimatedDeparture": null,
"fulfilledConstraints": []
},
{
"id": "destination1",
"lat": 25.04985,
"lng": 121.57717,
"sequence": 3,
"estimatedArrival": null,
"estimatedDeparture": null,
"fulfilledConstraints": []
}
],
"distance": "11829",
"time": "1607",
"interconnections": [
{
"fromWaypoint": "start",
"toWaypoint": "destination3",
"distance": 4368.0,
"time": 570.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "destination3",
"toWaypoint": "destination2",
"distance": 4364.0,
"time": 636.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "destination2",
"toWaypoint": "destination1",
"distance": 3097.0,
"time": 401.0,
"rest": 0.0,
"waiting": 0.0
}
],
"description": "Targeted best time; without traffic",
"timeBreakdown": {
"driving": 1607,
"service": 0,
"rest": 0,
"waiting": 0
}
}
],
"errors": [],
"processingTimeDesc": "61ms",
"responseCode": "200",
"warnings": null,
"requestId": null
}
但在實際生活中,我們經常會需要預估停留的時間,以及指定出發/抵達的時間,因此我們可以在上面這個案例中加入額外的參數。例如我們可以用「departure」這個參數來指定整個旅程的出發時間,以此為例是 2020 年的 12 月 12 日,格林威治時間早上一點整,換算台灣時間則是早上九點。我們也可以在每個路徑點上面用「st」這個參數來設定停留時間,例如我們設定 destination1-3 都停留 30 分鐘,也就是 1800 秒。
我們也可以為每個地點命名,這樣我們在解讀回傳的結果會更有效率,例如我們可以把 destination1 命名為「客戶李先生」。在「mode」中加入「traffic:enabled」,來考慮道路的堵塞狀況,算出來的時間也會更加符合實際狀況。
https://wse.ls.hereapi.com/2/findsequence.json?
start=台北車站;25.04717,121.51706
&destination1=客戶李先生;25.04985,121.57717;st:1800
&destination2=客戶王小姐;25.03314,121.5669;st:1800
&destination3=供應商陳先生;25.02665,121.53461;st:1800
&departure=2020-12-12T01:00:00Z
&mode=fastest;car;traffic:enabled
&apiKey={API_KEY}
回傳的結果如下,您會發現這些跟上一次的結果比起來,多了一些資訊,例如「estimatedArrival」代表預計抵達時間,「estimatedDeparture」代表預計離開時間,因此我們可以解讀這一趟旅程會在當天早上九點出發,並且在早上 9:11 抵達我們的第一個目的地「供應商陳先生」,停留三十分鐘後,在早上 9:41 離開「供應商陳先生」,前往下一個目的地「客戶王小姐」。依此類推,整趟旅程會在
{
"results": [
{
"waypoints": [
{
"id": "台北車站",
"lat": 25.04717,
"lng": 121.51706,
"sequence": 0,
"estimatedArrival": null,
"estimatedDeparture": "2020-12-12T01:00:00Z",
"fulfilledConstraints": []
},
{
"id": "供應商陳先生",
"lat": 25.02665,
"lng": 121.53461,
"sequence": 1,
"estimatedArrival": "2020-12-12T01:11:18Z",
"estimatedDeparture": "2020-12-12T01:41:18Z",
"fulfilledConstraints": [
"st:1800"
]
},
{
"id": "客戶王小姐",
"lat": 25.03314,
"lng": 121.5669,
"sequence": 2,
"estimatedArrival": "2020-12-12T01:54:19Z",
"estimatedDeparture": "2020-12-12T02:24:19Z",
"fulfilledConstraints": [
"st:1800"
]
},
{
"id": "客戶李先生",
"lat": 25.04985,
"lng": 121.57717,
"sequence": 3,
"estimatedArrival": "2020-12-12T02:33:08Z",
"estimatedDeparture": null,
"fulfilledConstraints": [
"st:1800"
]
}
],
"distance": "12271",
"time": "7388",
"interconnections": [
{
"fromWaypoint": "台北車站",
"toWaypoint": "供應商陳先生",
"distance": 4332.0,
"time": 678.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "供應商陳先生",
"toWaypoint": "客戶王小姐",
"distance": 4364.0,
"time": 781.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "客戶王小姐",
"toWaypoint": "客戶李先生",
"distance": 3575.0,
"time": 529.0,
"rest": 0.0,
"waiting": 0.0
}
],
"description": "Targeted best time; with , improvement for traffic",
"timeBreakdown": {
"driving": 1988,
"service": 5400,
"rest": 0,
"waiting": 0
}
}
],
"errors": [],
"processingTimeDesc": "465ms",
"responseCode": "200",
"warnings": null,
"requestId": null
}
接著我們就來實際用 Waypoints Sequence API 來實做一個旅遊行程規劃的案例,這樣的用途比較生活化且容易理解。我們可以設定旅客早上八點整從蘭城晶英酒店(24.75374,121.75067)出發,接著列出幾個我們想去的景點如下:
於是我們可以把相關參數放進 Waypoints Sequence API 中,並送出請求:
https://wse.ls.hereapi.com/2/findsequence.json?
start=蘭城晶英酒店(起點);24.75374,121.75067
&destination1=城隍早餐;24.7588975,121.7526904;st:2400;acc:sa00:00:00Z|sa01:00:00Z
&destination2=宜蘭火車站幾米廣場;24.75475,121.7576;st:1800
&destination3=舊宜蘭監獄門廳;24.75371,121.7515;st:600
&destination4=宜蘭設治紀念館;24.75528,121.74901;st:1800
&destination5=橘之鄉蜜餞形象館;24.7797106,121.7373771;st:3600
&destination6=頭城老街;24.85697,121.8241578;st:3600;acc:sa04:00:00Z|sa06:00:00Z;before:destination7
&destination7=阿宗芋冰城;24.8587948,121.8259636;st:1200;acc:sa04:00:00Z|sa06:00:00Z
&destination8=龍潭湖風景區;24.7920844,121.7398288;st:7200;acc:sa06:00:00Z|sa08:00:00Z
&destination9=樂山溫泉拉麵;24.8312227,121.7757601;st:2400;at:2020-12-12T11:00:00Z;before:destination10
&destination10=春水笈溫泉湯屋;24.831647,121.770149;st:5400
&end=蘭城晶英酒店(終點);24.75374,121.75067
&departure=2020-12-12T00:00:00Z
&mode=fastest;car;traffic:enabled
&apiKey={API_KEY}
依照回傳的結果,我們可以排出以下的順序:
蘭城晶英酒店(起點):早上 08:00 出發。
舊宜蘭監獄門廳:早上 08:00 抵達,早上 08:10 離開。
城隍早餐(早餐):早上 08:14 抵達,早上 08:54 離開。
宜蘭設治紀念館:早上 08:57 抵達,早上 09:27 離開。
宜蘭火車站幾米廣場:早上 09:31 抵達,早上 10:01 離開。
橘之鄉蜜餞形象館:早上 10:13 抵達,早上 11:13 離開。
頭城老街(午餐):早上 11:44 抵達,下午 13:00 離開。
阿宗芋冰城:下午 01:01 抵達,下午 01:21 離開。
龍潭湖風景區:下午 01:51 抵達,下午 04:00 離開。
樂山溫泉拉麵(晚餐):下午 04:21 抵達,下午 07:40 離開。
春水笈溫泉湯屋:下午 07:42 抵達,下午 09:12 離開。
蘭城晶英酒店(終點):下午 09:37 抵達。
完成的回傳結果如下:
"results": [
{
"waypoints": [
{
"id": "蘭城晶英酒店(起點)",
"lat": 24.75374,
"lng": 121.75067,
"sequence": 0,
"estimatedArrival": null,
"estimatedDeparture": "2020-12-12T00:00:00Z",
"fulfilledConstraints": []
},
{
"id": "舊宜蘭監獄門廳",
"lat": 24.75371,
"lng": 121.7515,
"sequence": 1,
"estimatedArrival": "2020-12-12T00:00:54Z",
"estimatedDeparture": "2020-12-12T00:10:54Z",
"fulfilledConstraints": [
"st:600"
]
},
{
"id": "城隍早餐",
"lat": 24.7588975,
"lng": 121.7526904,
"sequence": 2,
"estimatedArrival": "2020-12-12T00:14:24Z",
"estimatedDeparture": "2020-12-12T00:54:24Z",
"fulfilledConstraints": [
"acc:sa00:00:00+00:00|sa01:00:00+00:00;st:2400"
]
},
{
"id": "宜蘭設治紀念館",
"lat": 24.75528,
"lng": 121.74901,
"sequence": 3,
"estimatedArrival": "2020-12-12T00:57:20Z",
"estimatedDeparture": "2020-12-12T01:27:20Z",
"fulfilledConstraints": [
"st:1800"
]
},
{
"id": "宜蘭火車站幾米廣場",
"lat": 24.75475,
"lng": 121.7576,
"sequence": 4,
"estimatedArrival": "2020-12-12T01:31:38Z",
"estimatedDeparture": "2020-12-12T02:01:38Z",
"fulfilledConstraints": [
"st:1800"
]
},
{
"id": "橘之鄉蜜餞形象館",
"lat": 24.7797106,
"lng": 121.7373771,
"sequence": 5,
"estimatedArrival": "2020-12-12T02:13:59Z",
"estimatedDeparture": "2020-12-12T03:13:59Z",
"fulfilledConstraints": [
"st:3600"
]
},
{
"id": "頭城老街",
"lat": 24.85697,
"lng": 121.8241578,
"sequence": 6,
"estimatedArrival": "2020-12-12T03:44:24Z",
"estimatedDeparture": "2020-12-12T05:00:00Z",
"fulfilledConstraints": [
"acc:sa04:00:00+00:00|sa06:00:00+00:00;st:3600",
"before:destination7"
]
},
{
"id": "阿宗芋冰城",
"lat": 24.8587948,
"lng": 121.8259636,
"sequence": 7,
"estimatedArrival": "2020-12-12T05:01:28Z",
"estimatedDeparture": "2020-12-12T05:21:28Z",
"fulfilledConstraints": [
"acc:sa04:00:00+00:00|sa06:00:00+00:00;st:1200"
]
},
{
"id": "龍潭湖風景區",
"lat": 24.7920844,
"lng": 121.7398288,
"sequence": 8,
"estimatedArrival": "2020-12-12T05:51:37Z",
"estimatedDeparture": "2020-12-12T08:00:00Z",
"fulfilledConstraints": [
"acc:sa06:00:00+00:00|sa08:00:00+00:00;st:7200"
]
},
{
"id": "樂山溫泉拉麵",
"lat": 24.8312227,
"lng": 121.7757601,
"sequence": 9,
"estimatedArrival": "2020-12-12T08:21:17Z",
"estimatedDeparture": "2020-12-12T11:40:00Z",
"fulfilledConstraints": [
"at:2020-12-12T11:00:00Z;st:2400",
"before:destination10"
]
},
{
"id": "春水笈溫泉湯屋",
"lat": 24.831647,
"lng": 121.770149,
"sequence": 10,
"estimatedArrival": "2020-12-12T11:42:43Z",
"estimatedDeparture": "2020-12-12T13:12:43Z",
"fulfilledConstraints": [
"st:5400"
]
},
{
"id": "蘭城晶英酒店(終點)",
"lat": 24.75374,
"lng": 121.75067,
"sequence": 11,
"estimatedArrival": "2020-12-12T13:37:02Z",
"estimatedDeparture": null,
"fulfilledConstraints": []
}
],
"distance": "59170",
"time": "49022",
"interconnections": [
{
"fromWaypoint": "蘭城晶英酒店(起點)",
"toWaypoint": "舊宜蘭監獄門廳",
"distance": 155.0,
"time": 54.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "舊宜蘭監獄門廳",
"toWaypoint": "城隍早餐",
"distance": 641.0,
"time": 210.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "城隍早餐",
"toWaypoint": "宜蘭設治紀念館",
"distance": 817.0,
"time": 176.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "宜蘭設治紀念館",
"toWaypoint": "宜蘭火車站幾米廣場",
"distance": 972.0,
"time": 258.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "宜蘭火車站幾米廣場",
"toWaypoint": "橘之鄉蜜餞形象館",
"distance": 4634.0,
"time": 741.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "橘之鄉蜜餞形象館",
"toWaypoint": "頭城老街",
"distance": 17468.0,
"time": 1825.0,
"rest": 0.0,
"waiting": 936.0
},
{
"fromWaypoint": "頭城老街",
"toWaypoint": "阿宗芋冰城",
"distance": 340.0,
"time": 88.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "阿宗芋冰城",
"toWaypoint": "龍潭湖風景區",
"distance": 15287.0,
"time": 1809.0,
"rest": 0.0,
"waiting": 503.0
},
{
"fromWaypoint": "龍潭湖風景區",
"toWaypoint": "樂山溫泉拉麵",
"distance": 8191.0,
"time": 1277.0,
"rest": 0.0,
"waiting": 9523.0
},
{
"fromWaypoint": "樂山溫泉拉麵",
"toWaypoint": "春水笈溫泉湯屋",
"distance": 796.0,
"time": 163.0,
"rest": 0.0,
"waiting": 0.0
},
{
"fromWaypoint": "春水笈溫泉湯屋",
"toWaypoint": "蘭城晶英酒店(終點)",
"distance": 9869.0,
"time": 1459.0,
"rest": 0.0,
"waiting": 0.0
}
],
"description": "Targeted best time; with , improvement for traffic",
"timeBreakdown": {
"driving": 8060,
"service": 30000,
"rest": 0,
"waiting": 10962
}
}
],
"errors": [],
"processingTimeDesc": "1414ms",
"responseCode": "200",
"warnings": null,
"requestId": null
}
歡迎到 HERE 開發者網站了解更多關於 Waypoints Sequence 的詳情:https://developer.here.com/documentation/routing-waypoints/
快速建構地圖服務(一) - 認識 HERE Studio / Data Hub
快速建構地圖服務(二) - 認識 HERE Data Hub CLI / API
快速建構地圖服務(三) - 使用 QGIS 玩轉 HERE Data Hub
快速建構地圖服務(四) - 當 Leaflet JS 遇見 Data Hub
快速建構地圖服務(五) - 整合 HERE 地點搜尋 API
快速建構地圖服務(六)- HERE Waypoints Sequence 路徑最佳排序
快速建構地圖服務(七)- 認識 HERE Routing API - 路徑規劃
快速建構地圖服務(八)- 認識 Matrix Routing
快速建構地圖服務(九)- Isoline Routing
快速建構地圖服務(十)- HERE Tour Planning 物流路徑預排與成本精算
快速建構地圖服務(十一)- HERE Route Matching GPS 軌跡分析
快速建構地圖服務(十二)- HERE Custom Locations 地圖資料倉儲與查詢
快速建構地圖服務(十三)- HERE Geofencing 地理圍籬
快速建構地圖服務(十四)- HERE Custom Routes 自建路網 + Vector Tile 向量圖磚 + Map Image API 靜態地圖
快速建構地圖服務(十五)- HERE Positioning 網路定位服務
請問有關第十點
搭配容量的設定,可以計算「pickup(取貨/上車)」或「drop(送貨/下車)」所需要的貨物空間。如果車輛的剩餘容量不足,可以略過特定的取貨點。
我在API文件中找不到相關的介紹及參數,請問可以告知相關參數嗎?