iT邦幫忙

2021 iThome 鐵人賽

DAY 11
0
AI & Data

我比機器更需要學習系列 第 11

Day11 K平均演算法(K-means clustering algorithm)

  • 分享至 

  • xImage
  •  

什麼是K平均演算法?

講人話就是從所有資料當中亂數選擇K個中心點,把個別資料依照最近的中心點分成K群,將每群的平均值當成新K個中心點,再分成K群,最終資料會收斂成K個彼此接近的群體。

淺談K平均演算法

"物以類聚,人以群分",K平均演算法是屬於非監督學習的一種,主要用於分群,要如何知道K值的起始值(隨機給予的中心點)?使用K-means++,會讓起始值盡量保持較遠的距離,加快收斂的速度。要如何選擇K值?假如能很明確知道要分成幾類,K值就很容易選擇了,假如不明確的話,網路上應該有方法(我沒查)。要如何選擇合適的距離計算方式?只要你覺得合理幾乎都可以用(好像有講跟沒講一樣)。

優點:

速度快且易解釋。
資料已排除極端值,結果較不易受到影響。
資料皆為數值型。
樣本規模差異不大。

上一篇
Day10 休息是為了走更長遠的路
下一篇
Day 12 強化學習 (Reinforcement Learning)
系列文
我比機器更需要學習23
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言