iT邦幫忙

2021 iThome 鐵人賽

DAY 29
0
AI & Data

數據分析方法研究和理解演算法系列 第 29

DAY29 CNN(卷積神經網路 續三)

  • 分享至 

  • xImage
  •  

昨天介紹完CNN卷積神經網路反向傳播程式,今天要來研究CNN卷積神經網路實際運作程式:
首先是全部正向傳播:

def forward_all(image, label):
	#把圖片像素0~255轉乘-0.5~0.5
	#另外把資料依序帶入捲積層,池化層,和全連階層
    out = conv.forward((image / 255) - 0.5)
    out = pool.forward(out)
    out = softmax.forward(out)

    #把機率值取log
    loss = -np.log(out[label])
    #機率最大值如果和實際label一樣ACC取1 
    acc = 1 if np.argmax(out) == label else 0
	#返回輸出結果,loss,和acc
    return out, loss, acc

接下來是訓練過程(正向+反向傳播)並修改權重:(程式如下)

#實際訓練
def train_all(im, label, lr=.005):
    #正向傳播
    out, loss, acc = forward_all(im, label)
    
    #取出權重
    gradient = np.zeros(10)
    gradient[label] = -1 / out[label]
    
    #反向傳播(學習率0.005)
    gradient = softmax.backprop(gradient, lr)
    gradient = pool.backprop(gradient)
    gradient = conv.backprop(gradient, lr)
    #返回 loss和acc
    return loss, acc

實際帶入資料:

#做3次CNN訓練
for epoch in range(3):
    print('--- 第 %d 次訓練---' % (epoch + 1))
    
    #從0~len(train_images)序列將其打亂
    permutation = np.random.permutation(len(train_images))
    #把資料洗牌
    train_images = train_images[permutation]
    train_labels = train_labels[permutation]
    
    # Train
    #起始loss
    loss = 0
    #起始正確數
    num_correct = 0
    for i, (im, label) in enumerate(zip(train_images, train_labels)):
        #每100次回報狀況
        if i > 0 and i % 100 == 99:
            print(
                '[Step %d] Past 100 steps: Average Loss %.3f | Accuracy: %d%%' %
                (i + 1, loss / 100, num_correct)
            )
            loss = 0
            num_correct = 0
           #
        l, acc = train_all(im, label)
        #loss加總
        loss += l
        #正確數幾總
        num_correct += acc

訓練過程結果如下:

--- 第 1 次訓練---
[Step 100] Past 100 steps: Average Loss 2.235 | Accuracy: 18%
[Step 200] Past 100 steps: Average Loss 2.107 | Accuracy: 31%
[Step 300] Past 100 steps: Average Loss 1.982 | Accuracy: 45%
[Step 400] Past 100 steps: Average Loss 1.690 | Accuracy: 55%
[Step 500] Past 100 steps: Average Loss 1.403 | Accuracy: 62%
[Step 600] Past 100 steps: Average Loss 1.217 | Accuracy: 71%
[Step 700] Past 100 steps: Average Loss 1.064 | Accuracy: 69%
[Step 800] Past 100 steps: Average Loss 0.852 | Accuracy: 75%
[Step 900] Past 100 steps: Average Loss 0.738 | Accuracy: 81%
[Step 1000] Past 100 steps: Average Loss 0.771 | Accuracy: 73%
--- 第 2 次訓練---
[Step 100] Past 100 steps: Average Loss 0.770 | Accuracy: 81%
[Step 200] Past 100 steps: Average Loss 0.659 | Accuracy: 80%
[Step 300] Past 100 steps: Average Loss 0.511 | Accuracy: 86%
[Step 400] Past 100 steps: Average Loss 0.542 | Accuracy: 84%
[Step 500] Past 100 steps: Average Loss 0.525 | Accuracy: 84%
[Step 600] Past 100 steps: Average Loss 0.585 | Accuracy: 83%
[Step 700] Past 100 steps: Average Loss 0.644 | Accuracy: 79%
[Step 800] Past 100 steps: Average Loss 0.570 | Accuracy: 79%
[Step 900] Past 100 steps: Average Loss 0.524 | Accuracy: 84%
[Step 1000] Past 100 steps: Average Loss 0.523 | Accuracy: 84%
--- 第 3 次訓練---
[Step 100] Past 100 steps: Average Loss 0.451 | Accuracy: 86%
[Step 200] Past 100 steps: Average Loss 0.423 | Accuracy: 85%
[Step 300] Past 100 steps: Average Loss 0.437 | Accuracy: 91%
[Step 400] Past 100 steps: Average Loss 0.630 | Accuracy: 77%
[Step 500] Past 100 steps: Average Loss 0.355 | Accuracy: 91%
[Step 600] Past 100 steps: Average Loss 0.474 | Accuracy: 86%
[Step 700] Past 100 steps: Average Loss 0.453 | Accuracy: 88%
[Step 800] Past 100 steps: Average Loss 0.455 | Accuracy: 87%
[Step 900] Past 100 steps: Average Loss 0.335 | Accuracy: 92%
[Step 1000] Past 100 steps: Average Loss 0.449 | Accuracy: 89%

好,現在帶入test程式如下:

#起始loss
loss = 0
#起始正確數
num_correct = 0
for im, label in zip(test_images, test_labels):
	#正向傳播
    out, l, acc = forward_all(im, label)
    #看loss
    loss += l
    #看正確數
    num_correct += acc
#test總長
num_tests = len(test_images)
#算比例
print('Test Loss:', loss / num_tests)
print('Test Accuracy:', num_correct / num_tests)

結果如下:

Test Loss: 0.6609244800993207
Test Accuracy: 0.781

(資料來源:https://zhuanlan.zhihu.com/p/102119808並加上註解程式)

好,今天CNN程式算是研究完,機器學習算是告一段落

男孩看著狐狸,狐狸看著男孩,他們相交於森林入口,男孩全身被一團橘色氣包圍著,而望著沒有嘴巴狐狸,男孩只是訝異地看著牠,狐狸舉起牠紅色爪子,瞬間在周圍出現火焰包圍著了兩人,狐狸朝著男孩走去,男孩感覺到一陣恐懼,想要逃跑,但周圍都是火,男孩只能退到火焰周圍,狐狸慢慢地走到男孩面前,男孩閉上了眼睛,想像自己被爪子貫穿畫面,只是過了許久,都沒有感覺到痛覺,男孩好奇的張開眼睛,發現狐狸一動也不動,而他的爪子停留在戒指上,男孩把手指伸出了戒指,發現戒指就停留在空中並沒有掉落,而圍繞在兩人周圍火焰慢慢的熄滅,最後消失不見,男孩突然覺得口袋裡多出東西,他摸了摸口袋發現裡面有一朵木棉花

        --|直到最後,那種窒息感還是存在 |--  MM.CS

上一篇
DAY28 CNN(卷積神經網路 續二)
下一篇
DAY30 30天心得感想
系列文
數據分析方法研究和理解演算法30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言