LeetCode Js-53. Maximum Subarray。
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
給予一個 nums 的整數陣列,尋找連續的數列為最大的數列和,並回傳該數列。
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6
Solution:
Code:
var maxSubArray = function(nums) {
let response = nums[0]
for (let i = 1; i < nums.length; ++i) {
if (nums[i - 1] > 0) {nums[i] += nums[i - 1]}
response = Math.max(response, nums[i])
}
return response
};
FlowChart:
Example 1
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Array: 0 1 2 3 4 5 6 7 8
Length: 1 2 3 4 5 6 7 8 9
response = nums[0] //-2
step.1
i = 1
nums[i - 1] > 0 => (nums[0] = -2) < 0 //break
response = Math.max(response, nums[i]) => Math.max(-2, -2)
//response = -2
step.2
i = 2
nums[i - 1] > 0 => (num[1] = 1) > 0 -2
nums[i] = nums[2] + nums[2-1] => nums[2] = -3 + 1 = -2 //Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
response = Math.max(response, nums[i]) => Math.max(-2, -2)
//response = -2
step.3
i = 3
nums[i - 1] > 0 => (num[2] = -2) < 0 //break
response = Math.max(response, nums[i]) => Math.max(-2, 4)
//response = 4
step.4
i = 4
nums[i - 1] > 0 => (num[3] = 4) > 0 3
nums[i] = nums[4] + nums[4-1] => nums[4] = -1 + 4 = 3 //Input: nums = [-2,1,-2,4,-1,2,1,-5,4]
response = Math.max(response, nums[i]) => Math.max(4, -3)
//response = 4
step.5
i = 5
nums[i - 1] > 0 => (num[4] = 3) > 0 5
nums[i] = nums[5] + nums[5-1] => nums[5] = 2 + 3 = 5 //Input: nums = [-2,1,-2,4,3,2,1,-5,4]
response = Math.max(response, nums[i]) => Math.max(4, 5)
//response = 5
step.6
i = 6
nums[i - 1] > 0 => (num[5] = 5) > 0 6
nums[i] = nums[6] + nums[6-1] => nums[6] = 1 + 5 = 6 //Input: nums = [-2,1,-2,4,-1,5,1,-5,4]
response = Math.max(response, nums[i]) => Math.max(5, 6)
//response = 6
step.7
i = 7
nums[i - 1] > 0 => (num[6] = 3) > 0 1
nums[i] = nums[7] + nums[7-1] => nums[7] = -5 + 6 = 1 //Input: nums = [-2,1,-2,4,-1,2,6,-5,4]
response = Math.max(response, nums[i]) => Math.max(6, 1)
//response = 6
step.8
i = 8
nums[i - 1] > 0 => (num[7] = 1) > 0 5
nums[i] = nums[8] + nums[8-1] => nums[8] = 4 + 1 = 5 //Input: nums = [-2,1,-2,4,-1,2,6,1,4]
response = Math.max(response, nums[i]) => Math.max(6, 5)
//response = 6
return response = 6