$$
\lim_{x\to a}[f(x)+g(x)] = \lim_{x\to a}f(x) + \lim_{x\to a}g(x)
$$
$$
\lim_{x\to a}[f(x)-g(x)] = \lim_{x\to a}f(x) - \lim_{x\to a}g(x)
$$
$$
\lim_{x\to a}[cf(x)] = c\lim_{x\to a}f(x)
$$
$$
\lim_{x\to a}[f(x)g(x)] = \lim_{x\to a}f(x) * \lim_{x\to a}g(x)
$$
$$
\lim_{x\to a}{f(x) \over g(x)} = {\lim_{x\to a}f(x) \over \lim_{x\to a}g(x)}
\quad if \lim_{x\to a}g(x) \neq 0
$$
$$
\lim_{x \to a}[f(x)]^n=[\lim_{x \to a}f(x)]^n
$$
$$
\lim_{x \to a}c=c
$$
$$
\lim_{x \to a}x=a
$$
$$
\lim_{x \to a}x^n=a^n
$$
$$
\lim_{x \to a}\sqrt[n] {x}=\sqrt[n] {a}
$$
$$
\lim_{x \to a}\sqrt[n] {f(x)}=\sqrt[n] {\lim_{f\to a}f(x)}
$$