前言:
經歷了三四天的訓練,總算讓模型維持在9成以上的準確率?
val_accuracy 的部分,我還在想如何提高,有可能需要捨棄掉每次訓練 accuracy 下降的結果
改成只儲存數值高的 accuracy
訓練:
835/835 [==============================] - 367s 439ms/step - batch: 417.0000 - size: 8.0000 - loss: 0.0250 - accuracy: 0.9907 - val_loss: 4.0026
- val_accuracy: 0.6502
儲存訓練模型
835/835 [==============================] - 368s 440ms/step - batch: 417.0000 - size: 8.0000 - loss: 0.0235 - accuracy: 0.9924 - val_loss: 3.9955
- val_accuracy: 0.6466
儲存訓練模型
835/835 [==============================] - 369s 442ms/step - batch: 417.0000 - size: 8.0000 - loss: 0.0224 - accuracy: 0.9925 - val_loss: 4.1223
- val_accuracy: 0.6418
儲存訓練模型
835/835 [==============================] - 336s 402ms/step - batch: 417.0000 - size: 8.0000 - loss: 0.0226 - accuracy: 0.9916 - val_loss: 3.8956
- val_accuracy: 0.6611
儲存訓練模型
835/835 [==============================] - 326s 390ms/step - batch: 417.0000 - size: 8.0000 - loss: 0.0232 - accuracy: 0.9928 - val_loss: 3.9565
- val_accuracy: 0.6514
儲存訓練模型
辨識:
python predict_resnet50.py 50.jpg
['50.jpg']
=============================
...
50.jpg
準確率: 99.84% 050.Chinese_shar-pei
準確率: 0.16% 088.Irish_water_spaniel
準確率: 0.00% 003.Airedale_terrier
準確率: 0.00% 069.French_bulldog
準確率: 0.00% 047.Chesapeake_bay_retriever
準確率: 0.00% 051.Chow_chow
準確率: 0.00% 103.Mastiff
準確率: 0.00% 038.Brussels_griffon
準確率: 0.00% 027.Bloodhound
準確率: 0.00% 041.Bullmastiff