Given an array of distinct integers candidates
and a target integer target
, return a list of all unique combinations of candidates
where the chosen numbers sum to target
. You may return the combinations in any order.
The same number may be chosen from candidates
an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different.
It is guaranteed that the number of unique combinations that sum up to target
is less than 150
combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1
Output: []
Constraints:
1 <= candidates.length <= 30
1 <= candidates[i] <= 200
candidates
are distinct.1 <= target <= 500
給定一個整數陣列 nums 還有一個整數 target
要求要寫出一個演算法來找出和為 target 的所有 nums 內元素不重複組合
可以利用類似 PowerSet 個概念
分為選擇該數值或是不選該數值的 decision tree
每次先檢查當選了該數值還可以繼續則及續選
否則就往下一個數值檢查
概念圖如下
package sol
func combinationSum(candidates []int, target int) [][]int {
result := [][]int{}
var dfs func(i int, cur []int, total int)
dfs = func(i int, cur []int, total int) {
// break condition
if total == target {
temp := make([]int, len(cur))
copy(temp, cur)
result = append(result, temp)
return
}
// prune not possible path
if i >= len(candidates) || total > target {
return
}
// choose i
cur = append(cur, candidates[i])
dfs(i, cur, total+candidates[i])
// not choose i, next choose
cur = cur[:len(cur)-1]
dfs(i+1, cur, total)
}
dfs(0, []int{}, 0)
return result
}