Given an integer n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
's* in the binary representation of* i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 10^5
Follow up:
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?給定一個非負數字 n,
回傳一個長度為 n+1 陣列 ans
陣列 ans 每個數值 ans[i] 代表數值 i 轉換成 2元表示式中非零的 bit 個數
對於 每個數值 可以發現 只要數值 是 2某個次方項 代表該 數值所使用非零的bit 數值是 1
而對於每個 ans[i] 假設存在某一個 k 使得 2^k > ans[i]
則有以下關係式 ans[i] = 1 + ans[i - 2^k]
而 2^k 可以透過把 0b1 不斷向左 bit shift 來得到
透過這個方式每次 只要 loop 0 到 n
就可以算完所有結果所以時間複雜度是 O(n)
package sol
func countBits(n int) []int {
k := 0
ans := []int{0}
for pos := 1; pos <= n; pos++ {
if pos == (0b1 << k) {
ans = append(ans, 1)
k++
} else {
ans = append(ans, 1+ans[pos-(0b1<<(k-1))])
}
}
return ans
}