接續上一次的內容,Series 在許多應用還有一個好用的特性,在進行算術運算時,會自動按照索引標籤對齊:
In [40]: obj3
Out[40]:
Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64
In [41]: obj4
Out[41]:
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
In [42]: obj3 + obj4
Out[42]"
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
如果你使用過資料庫,可以把這個功能養成是類似 join
操作
Series 物健身本與他的索引都有一個 name
屬性,這個屬性與 pandas 功能的其他領域整合:
In [43]: obj4.name = "population"
In [44]: obj4.index.name = "state"
In [45]: obj4
Out[45]:
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
也可以透過賦值來進行修改 Series 的索引:
In [46]: obj
Out[46]:
0 4
1 7
2 5
3 3
dtype: int64
In [47]: obj.index = ["Bob", "Steve", "Jeff", "Ryan"]
In [48]: obj
Out[48]:
Bob 4
Steve 7
Jeff 5
Ryan 3
dtype: int64
今日的分享就到這囉,我們明天見,掰掰!