iT邦幫忙

mlops相關文章
共有 165 則文章
鐵人賽 AI & Data DAY 25

技術 透過機器學習審查合約書的4個優點

根據《哈佛商業評論》分享的一項報告數據,“低效率的合約管理流程會導致公司在特定交易中損失 5% 到 40% 的價值。”,也因此,更好的合約管理可以提高效率、生產...

鐵人賽 AI & Data DAY 10

技術 [Day 10] 模型達到商業指標的挑戰 — Test set performance 的殞落

Achieving low average tested error isn't good enough for a project. 前言 昨天談到大部分...

鐵人賽 AI & Data DAY 26
從 AI 落地談 MLOps 系列 第 26

技術 Day 26 : 公平指標與實作 Fairness Indicators

模型公平性的思考 隨著 AI 對於各領域和社會的影響逐漸增加,建立公平且可包容所有人的系統至關重要,為達到負責任的 AI,重視公平性,實踐以人為本的設計初衷...

鐵人賽 AI & Data DAY 9

技術 [Day 09] 建立機器學習模型 — Andrew Ng 大神說要這樣做

AI system = Code (Algorithm/Model) + Data TL;DR 建立 ML 系統時,要把 AI system = Code ...

鐵人賽 AI & Data DAY 25
從 AI 落地談 MLOps 系列 第 25

技術 Day 25 : 可解釋的 AI - Explain AI (XAI)

AI 黑箱作業已經被詬病許久,因為 AI 類神經網絡的複雜性不似機械學習的樹狀結構、線性結構容易理解中間判斷過程,但隨著可解釋 AI 技術的出現,理解模型可...

鐵人賽 AI & Data DAY 8

技術 [Day 08] 使用 fastAPI 部署 YOLOv4 (2/2) — 自行撰寫 Client 進行互動

前言 昨天我們使用了 fastAPI 內建 client 的 UI 來與 API 互動,今天我們改為利用 Python 的 requests 函式庫編寫一個最簡...

鐵人賽 AI & Data DAY 24
從 AI 落地談 MLOps 系列 第 24

技術 Day 24 : 負責任的 AI - Responsible AI (RAI)

當您用心呵護的機械學習終於實現,期待能滿足與提升使用者福祉,您應該有足夠的信心與能力對產品負責, AI 產品亦然。 延續系列文對您的機械學習產品生命週期的思考...

鐵人賽 AI & Data DAY 22

技術 MLOps在金融產業:模型監控(資料漂移與特徵漂移)

線上模型的偏差漂移 Amazon SageMaker Clarify 偏差監控的功能可以幫助資料科學家和機器學習工程師定期監控偏差預測。這些報告可以在SageM...

鐵人賽 AI & Data DAY 7

技術 [Day 07] 使用 fastAPI 部署 YOLOv4 (1/2) — 以內建 Client 進行互動

前言 我們花了將近一周的時間來介紹部署深度學習模型背後的概念,我想大家應該很想知道究竟該怎麼實作,所以今天就來動動手吧。這部分的程式碼主要規劃為在本機端執行,所...

鐵人賽 AI & Data DAY 23
從 AI 落地談 MLOps 系列 第 23

技術 Day 23 : 模型分析 TensorFlow Model Analysis (TFMA)

模型分析 TFMA 介紹 過往我們關注模型的訓練結果,會追蹤該模型在每次 epochs 之後的 AUC 、 ACC、 loss 等指標變化,並且以視覺化繪圖...

鐵人賽 AI & Data DAY 21

技術 MLOps在金融產業:關於ML系統監控的why, what, how

我們常常聽到,在一個ML專案當中,會需要做各種的資料監控。這些資料監控包含哪些呢? 開發流程在開發流程當中,不管是資料、程式碼、模型,都會需要透過版本控制監...

鐵人賽 AI & Data DAY 6

技術 [Day 06] 監控、維護 — 自己開一家徵信社吧!

大家好,在開始之前先祝大家中秋節快樂~~ 監控 (Monitor) 最常見的監控方法為儀表板 (Dashboard),依照專案可選擇適當的監控指標,而監控指標的...

鐵人賽 AI & Data DAY 22
從 AI 落地談 MLOps 系列 第 22

技術 Day 22 : 模型優化 - 知識蒸餾 Knowledge Distillation

什麼是知識蒸餾 Knowledge Distillation 知識蒸餾 Knowledge Distillation 為模型壓縮技術,其中 student 模...

鐵人賽 AI & Data DAY 20

技術 MLOps在金融產業:模型的可解釋性與公平性

有一些模型像是邏輯回歸和決策樹,背後運作的原因相當簡單明瞭,容易解釋模型是如何得出其輸出的。但隨著更多特徵的添加或更複雜的機器學習模型的使用,可解釋性變得更加困...

鐵人賽 AI & Data DAY 21
從 AI 落地談 MLOps 系列 第 21

技術 Day 21 : 模型優化 - 剪枝 Pruning

如果說可以讓模型縮小10倍,精度還維持水準,這是什麼巫術? 延續 Day 20 的模型優化作法,本次再結合剪枝技術做到更輕量的模型效果。 什麼是剪枝 Pru...

鐵人賽 AI & Data DAY 5

技術 [Day 05] 部署模式 — 我的模型叫崔弟

常見部署情況 根據需求不同,有不一樣的部署模式,常見的情況如下: 提供新的產品/功能:常用的設計模式為先從少量的預測開始驗證,再慢慢增加流量 (trafic)...

鐵人賽 AI & Data DAY 19

技術 MLOps在金融產業:看懂金融審計如何導入ML專案(附所需文件清單)

在algorithmia的 2021 年報告顯示,大多數組織在機器學習方面面臨一定程度的監管負擔,67% 的組織必須遵守多項法規。這些法規包含ISO, OCC,...

鐵人賽 AI & Data DAY 4

技術 [Day 04] 部署模型的挑戰 — 資料也懂超級變變變!?

部署模型有兩個主要的挑戰,事實上這兩個挑戰隱含了機器學習產品生命週期裡的 "部署 (Deploy in production)" 與 &qu...

鐵人賽 AI & Data DAY 20
從 AI 落地談 MLOps 系列 第 20

技術 Day 20 : 模型優化 - 訓練後量化 Post Training Quantization

當我們訓練模型需要部署在硬體較為受限的智慧型裝置、IOT設備,模型運算在吃緊的硬體資源中顯得笨重,此時可以採取模型優化策略改進。 量化 Quantizatio...

鐵人賽 AI & Data DAY 18

技術 MLOps在金融產業: 4個步驟建立安全ML環境

在前面的MLOps在金融產業:常見案例與工作流程文章當中,曾經提到,在金融業當中的MLOps可帶來的規範文件、常見工作流程。 今天將針對提供安全的機器學習環境來...

鐵人賽 AI & Data DAY 19
從 AI 落地談 MLOps 系列 第 19

技術 Day 19 : 深度學習(神經網絡)自動建模術 - AutoMLs

隨著 ML/DL 模型研究屢有突破,現今模型訓練成果已經相當具有水準,但如果需要藉由手動選擇最佳的模型確實較花時間,因此已經出現取多自動化機械學習 AutoM...

鐵人賽 AI & Data DAY 17

技術 MLOps在金融產業:常見案例與工作流程

在金融產業的ML 在algorithmia的2021 年企業機器學習趨勢調查顯示,關於客戶體驗跟流程自動化的案例,其中幾個比較顯著的,像是改進客戶體驗、增進客戶...

鐵人賽 AI & Data DAY 3

技術 [Day 03] 機器學習產品生命週期 — 救救我啊我救我

MLOps is an emerging discipline and comprises a set of tools and principles to ...

鐵人賽 AI & Data DAY 18
從 AI 落地談 MLOps 系列 第 18

技術 Day 18 : 深度學習(神經網絡)自動調參術 - KerasTuner

接續將關注焦點來到 Model 的主題,在您閱讀本系列文章之前,您或許已有建模經驗,在用於生產的機械學習情境,手動調參優化模型與資料是耗費人時的吃重工作,自動...

鐵人賽 AI & Data DAY 2

技術 [Day 02] Why MLOps — 從"地平說" 走向宇宙

Machine learning is now a product engineering discipline. — Josh Tobin 全端深度學習...

鐵人賽 AI & Data DAY 1

技術 [Day 01] 前言 — 是誰殺了模型?

緣起 不知道大家是否有這樣的經驗,買了一本標榜手把手教學的書,隨書附贈的 GitHub 頁面上有與每個章節搭配的 Jupyter Notebook,有些甚至還有...

鐵人賽 AI & Data DAY 17
從 AI 落地談 MLOps 系列 第 17

技術 Day 17 : 用於生產的機械學習 - 特徵選擇 Feature Selection

特徵選擇是機器學習中的核心概念之一,不相關或部分相關的特徵會對模型性能產生負面影響,也會有效能的問題,適當的挑選與目標變量最相關的特徵集,有助降低模型的複雜性,...

鐵人賽 AI & Data DAY 16

技術 案例:MLOps在醫療產業(下) - 3個局限性與4個學習要點

跟AI/ML 有關的監管考量 在前一篇的文章指出,在醫療產業中的監管文獻有兩篇。然而這兩篇的內容其實都不是針對ML的案例而寫的。在MDCG的另一個規範MDR/I...

鐵人賽 AI & Data DAY 15

技術 案例:MLOps在醫療產業(上) - 5個常見案例與3個風險來源

隨著生物醫學數據的增加,機器學習可以提供各式服務來幫助人類。常見的案例像是:診斷問題、藥物發明、虛擬醫療保健等。在醫療產業推機器學習的服務,會遇到哪些常見的監管...

鐵人賽 AI & Data DAY 16
從 AI 落地談 MLOps 系列 第 16

技術 Day 16 : 特徵工程 tf.Tramsform 實作

接續 Day 15 的 tf.Tramsform 介紹,今日進行實作,先以TensorFlow Transform 預處理數據的入門範例 作為演示過程,官方 C...