各種商務情境都在思考如何融入 AI 提供更適切的智慧化服務,在Day 04 : 以資料為中心的人工智慧 Data-Centric AI 介紹透過關注資料為中心的...
什麼是知識蒸餾 Knowledge Distillation 知識蒸餾 Knowledge Distillation 為模型壓縮技術,其中 student 模...
當我們訓練模型需要部署在硬體較為受限的智慧型裝置、IOT設備,模型運算在吃緊的硬體資源中顯得笨重,此時可以採取模型優化策略改進。 量化 Quantizatio...
特徵選擇是機器學習中的核心概念之一,不相關或部分相關的特徵會對模型性能產生負面影響,也會有效能的問題,適當的挑選與目標變量最相關的特徵集,有助降低模型的複雜性,...
今日份 Ferris 今天要來下載 Taiwan LLaMa 模型啦,在 Ferris 的介紹下 Taiwan LLaMa 跟 Iron LLaMa 也聯手了!...
如果說可以讓模型縮小10倍,精度還維持水準,這是什麼巫術? 延續 Day 20 的模型優化作法,本次再結合剪枝技術做到更輕量的模型效果。 什麼是剪枝 Pru...
接續將關注焦點來到 Model 的主題,在您閱讀本系列文章之前,您或許已有建模經驗,在用於生產的機械學習情境,手動調參優化模型與資料是耗費人時的吃重工作,自動...
當您用心呵護的機械學習終於實現,期待能滿足與提升使用者福祉,您應該有足夠的信心與能力對產品負責, AI 產品亦然。 延續系列文對您的機械學習產品生命週期的思考...
標註資料與特徵工程是處理資料重要的步驟,目的都是為了讓模型效果最佳化,標註的一致性、特徵工程到位都對模型影響至關重要。現實生活情境的資料標註向來不是件容易的事情...
AI 黑箱作業已經被詬病許久,因為 AI 類神經網絡的複雜性不似機械學習的樹狀結構、線性結構容易理解中間判斷過程,但隨著可解釋 AI 技術的出現,理解模型可...
A chain is only as strong as its weakest link. ― Thomas Reid 前言 今天的開頭是一句英文俗諺,它...
資料團隊組建 當各行業意識數據帶來業務成長新動能時,追求卓越的企業意識到要充分運用企業數據,必須組建專門數據團隊,期待專業團隊具有提煉數據價值的慧眼,也期待落...
前言 我們花了將近一周的時間來介紹部署深度學習模型背後的概念,我想大家應該很想知道究竟該怎麼實作,所以今天就來動動手吧。這部分的程式碼主要規劃為在本機端執行,所...
隨著 ML/DL 模型研究屢有突破,現今模型訓練成果已經相當具有水準,但如果需要藉由手動選擇最佳的模型確實較花時間,因此已經出現取多自動化機械學習 AutoM...
在 Day 06 引用與介紹 3 個 MLOps 相關定義,如果 MLOps 是一種工程文化與實踐,旨在 ML 系統開發與 ML 系統操作,實際遇到的挑戰與技術...
什麼是 MLOps?用最短的一句話來解釋它的話,MLOps 就是 Machine Learning 的 DevOps。 MLOps = Machine Lear...
部署模型有兩個主要的挑戰,事實上這兩個挑戰隱含了機器學習產品生命週期裡的 "部署 (Deploy in production)" 與 &qu...
MLOps 是值得持續投入的新興學門,如同 Day 01 談到的此系列目的,談如何從佈署機械學習至商業情境(ML in Production),並關注佈署之...
垃圾進垃圾出「 Garbage in, garbage out 」,不去檢視垃圾有多垃圾的情況下,用再好的模型都是垃圾! Day 03 有提到 AI 數據...
在網路情境常以 API 請求服務,用於生產的機械學習亦可用 REST API 形式提供服務。在Day 20、Day 21、Day 22 介紹部署在算力有限的終...
各種 Ops 是傳統組織架構崩解的號角 傳統功能性部門的分工方式容易造成資訊孤島,卻又為了企業營運活動而必須合作。純專案組織不用跨部門合作了,不必分享資訊也不必...
在討論MLOps的過程當中,許多客戶會針對他們有興趣的事情提出不同的問題,像是:模型監測、安全性、常見案例、資料的隱私處理等等。其中一次在談論AWS的ML Le...
從無到有開發 ML 專案到佈署需要 6 至 12 個月不等,在尚未有具體產出的過程中,會有對內部及外部說明進展的機會,能有架構、系統的與合作對象說明是很重要...
AI system = Code (Algorithm/Model) + Data TL;DR 建立 ML 系統時,要把 AI system = Code ...
大致功能與 Tensorboard 相同,但是整合了更多的深度學習(Llamaindex、Langchain、HuggingFace…)與機器學習(Sciki...
這幾天的文章主要分享三個頗受好評的模型實驗管理工具,市面上還有很多類似的工具,這些工具各有特色與強項,團隊可視情況選擇好維護的工具。 這些工具的目的都是在幫助團...
過去在 DL 模型的開發過程中,要追蹤大量的資料和實驗結果可能需要結合多項工具,形成較高的學習成本;針對這些問題,HPE 推出 MLDM、MLDE 作為解決方案...
今日份 Ferris 昨天以 ML 系統設計來看模型開發的各個面向,今天我們用 MNIST 來示範 Rust 怎麼訓練與輸出模型。所以今天的擬人化 Ferris...
相較於 Tensorboard 與 Weight&Biases,MLflow 更著重於「公司內部的多人專案」的實驗管理上,主要讓工程師自己建立屬於公司內...
今日份 Ferris 今天要使用 Docker 把先前的專案容器化啦,畫圖的時候畫出鯨魚 (海豚?) 螃蟹,有夠可愛哈哈哈 部署機器學習應用 🏮 今天要部署的...