iT邦幫忙

2019 iT 邦幫忙鐵人賽

DAY 24
0
AI & Data

當自動駕駛遇見AI系列 第 24

Day24-當自動駕駛遇見AI-Project2-Advanced-Lane-Lines(6)

  • 分享至 

  • xImage
  •  

前言

進行HLS過濾工作

說明

HLS S-Channel Threshold

# Define a function that thresholds the S-channel of HLS
# Use exclusive lower bound (>) and inclusive upper (<=)
def hls_sthresh(img, thresh=(125, 255)):
    # 1) Convert to HLS color space
    hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
    # 2) Apply a threshold to the S channel
    binary_output = np.zeros_like(hls[:,:,2])
    binary_output[(hls[:,:,2] > thresh[0]) & (hls[:,:,2] <= thresh[1])] = 1
    # 3) Return a binary image of threshold result
    return binary_output
print('...')

Visualize HLS S-Channel threshold


def update(min_thresh, max_thresh):
    exampleImg_SThresh = hls_sthresh(exampleImg_unwarp, (min_thresh, max_thresh))
    # Visualize hls s-channel threshold
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
    f.subplots_adjust(hspace = .2, wspace=.05)
    ax1.imshow(exampleImg_unwarp)
    ax1.set_title('Unwarped Image', fontsize=30)
    ax2.imshow(exampleImg_SThresh, cmap='gray')
    ax2.set_title('HLS S-Channel', fontsize=30)

interact(update,
         min_thresh=(0,255), 
         max_thresh=(0,255))

print('...')

成果

https://ithelp.ithome.com.tw/upload/images/20181108/20107143czo79CPvYj.png


上一篇
Day23-當自動駕駛遇見AI- Project2: Advanced Lane Finding(5)
下一篇
Day25-當自動駕駛遇見AI- Tensorflow
系列文
當自動駕駛遇見AI30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言