iT邦幫忙

第 11 屆 iThome 鐵人賽

DAY 11
0
Google Developers Machine Learning

ML Study Jam Journey系列 第 11

Day 11 Launching into ML (cont.)

  • 分享至 

  • xImage
  •  

Learn how to

  • Measure model performance using loss functions
  • Use loss functions as the basis for gradient descent
  • Optimize gradient descent to be as efficient as possible
  • Use performance metrics to make business decisions

Defining ML Models

Mathematical functions with parameters and hyper-parameters

  • Parameter - real-valued variable that changes during model training
  • Hyper-parameter - setting that we set before training and doesn't change afterwards

Summary
Measure model performance using loss functions
Use loss functions as the basis for gradient descent


上一篇
Day 10 Launching into ML (cont.)
下一篇
Day 12 Intro to TensorFlow
系列文
ML Study Jam Journey30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言