到目前為止,我們所學的所有監督式模型,都是建立在大量高品質的人工標註數據上。這個過程耗時耗力,也限制了模型的應用規模。 我們是否也能讓模型像人類一樣,單純透過觀...
影像分割 當我們想要的,不只是一個粗略的矩形邊界框,而是物體每一個像素級別的精確輪廓,例如精準描繪出腫瘤的位置,這時單靠我們前幾天學的方法已經不敷使用。這時,我...
R-CNN 系列演算法都有獲取候選區域這個步驟,然而也是因為分為兩步驟進行,雖然精準,但偵測速度受到了限制。因此另一派演算法選擇拋去這個步驟,最具代表性的模型為...
現實中的視覺任務,往往遠比我們前幾天所做的圖像分類還複雜,例如物件偵測:不只要知道圖片有一隻貓,還要知道貓在哪裡。物件偵測的目標是同時在一張圖片完成兩件事...
如果我們手上只有數百張貓狗的照片,是沒辦法像前幾天一樣訓練出像 ResNet 這種好的分類器,反而會遇到過擬合的問題。在這種缺乏數據的情況下,我們能用遷移學習...
至今我們學習的 VGG、ResNet 等模型,它們的設計目標都是追求極致的準確率。然而,這些模型龐大的參數數量和巨大的計算量,使得它們很難被部署到手機、無人機、...
雖然我們學會了怎麼用各種不同 CNN 模型來進行圖像辨認,但對他的認識仍停留在黑盒子的階段。模型在做出「這是一隻貓」的決斷時,還是不知道它是依據什麼做判斷的,而...
雖然昨天我們知道 VGGNet 在一定程度上有著網路越深、效果越好的特性,但是當研究人員把網路堆疊約 20 層以上時,模型的準確率反而開始下降。這不是過擬合所導...
AlexNet 在 2012 年之前,舉世聞名的 ILSVRC (ImageNet Large Scale Visual Recognition Challen...
ANN 的缺點 雖然 ANN 能夠自動學習特徵,但是他在處理影像時會把二維的圖片攤平成一維的向量,這會造成空間結構資訊的喪失。ANN 沒辦法理解相鄰或上下左右這...
線性模型 前一天我們學到了最直觀的 KNN 演算法,但他在預測時需要計算與所有訓練樣本的距離,這在數據量大時會變得非常緩慢。它並沒有真正「學習」到一個濃縮的、高...
機器學習簡介 我們對傳統電腦視覺領域中,基於幾何和梯度的方法論,已經有了非常深入的理解和實踐。這些方法在處理具有明確規則和幾何結構的任務時,表現得非常出色,但如...
RANSAC 雖然我們學到 ORB 能自動找到數十甚至上百對的匹配點,但其中不可避免地會包含一些錯誤的匹配。如果我們把這些包含「雜訊」的匹配點全部丟進去計算單應...
幾何變換 當我們在兩張圖片中找到了對應的特徵點後,如何計算出一個能將一張圖片「變形」到另一張圖片視角下的矩陣?這個矩陣稱為單應性矩陣 (homography),...
我們現在已經有能力從一張圖片中,提取出一組代表其結構的「重點座標」。但電腦要如何確定這是「同一個角」,而不是兩個不同的角呢? 描述子 描述子 (descript...
特徵工程 如果我們要跟一個沒見過貓的朋友敘述貓的長相,我們正常不會說「他左上的第一個像素顏色是什麼」,而是敘述他的眼睛、耳朵、尾巴長怎麼樣。對電腦來說,讓他主動...
在數位影像的世界裡,影像雜訊是無可避免的問題。無論是來自於光線不足、感光元件的熱雜訊,或是傳輸過程中的失真,雜訊都會降低影像品質。本篇將介紹常見的影像雜訊類型,...
從光子到檔案:曝光與影像格式 從按下相機快門的那刻,到變成我們看見的圖片之前,發生了哪些事情? 內部處理流程 在轉換程我們常見的 JPEG 格式前,相機前後基本...
什麼是像素 我們可以想像眼前有一幅馬賽克拼貼畫,它由數萬個彩色磁磚構成,而對於數位影像來說,這些彩色磁磚所指的就是像素 (pixel)。一張數位影像,本質上是由...
人類如何看見世界 在正式進入圖像處理與電腦視覺的領域之前,先來簡單說明「人類如何看見世界」這件事。人類的眼球由數個構造所構成,包含瞳孔 (pupil)、水晶體...
課程介紹影像辨識領域是近年來深度學習最蓬勃發展的一塊領域,舉凡智慧家居、自駕車、生產瑕疵品檢測、安防監控、醫療影像等應用,都和深度學習影像辨識技術息息相關。而...
ROS機器人開發實戰 https://www.ittraining.com.tw/ittraining/course/ros-robot/rosAI深度學習與...
汽車向來是最高檔次的消費產品類,封閉的產業;但當AI人工智慧的演算法和複雜架構因著GPU助長了深度學習的進展,微控制器和opensource的快速經驗複製加速了...
一旦巨量數據處理不是桌上的模擬測試場,而是在真實世界物理環境中,就並不單單只是演算法與軟體程式的耗能運作CPU而已,基礎建設設施的適切性,占了很原生的重要地位!...
宅宅駕駛座旁無伊人,莫辜負自幹雙手萬能, 怎沒人響應開源自動駕駛,一起來做沒有人簡介 今年最火紅的話題的就是電腦視覺、深度學習、自動駕駛, 最近最衝擊的兩新聞是...