iT邦幫忙

機器學習相關文章
共有 49 則文章

活動 高通 Qualcomm®台灣創新挑戰賽(QITC)2019 !

https://www.qualcomm.com/innovate-in-taiwan-challenge?utm_source=%E3%80%8A%E6%95...

技術 [筆記]C++ & C#影像處理-機器學習AdaBoost訓練

前言 偵測人臉或物體即將快到尾聲了,希望在12月底能完成相關的實作,也要給自己下一年新的目標,而我最困難的目標大概是英文。 這次要介紹機器學習的AdaBoost...

鐵人賽 影片教學 DAY 24

技術 人工智慧 (2/2)

[Day 24] 人工智慧 3.2:機器學習 (29min) -- 監督式學習 (Supervised Learning) => 分類 (Classi...

鐵人賽 自我挑戰組 DAY 14

技術 【Day 14】 利用Keras中的CNN方法 進行數字辨識

大家好,今天跟大家學習 利用Keras中的卷積神經網路(Convolutional Neural Networks,CNN)來進行數字辨識。 謎之聲:說好的AS...

鐵人賽 AI & Data DAY 23

技術 24 Recurrent neural network

接續上一篇。 Recurrent neural network 那大家所熟知的 RNN 是怎麼回事呢?我們把假設改了一下: 狀態都是 連續 的。 時間是離散的...

鐵人賽 AI & Data DAY 22

技術 23 Markov chain 及 HMM

上次我們講完在空間上,我們可以知道資料的區域性,並且利用 convolution 來萃取特徵。 這次我們來講時間,其實不一定要是"時間"序列...

鐵人賽 AI & Data DAY 17

技術 18 Multi-layer preceptron

我們來更具體一點講 multi-layer perceptron (MLP)。 最簡單的版本莫過於 linear MLP,不過不太會有人去用他,其實只是每層 l...

鐵人賽 AI & Data DAY 16

技術 17 Autoencoder

既然前一篇提到學習特徵是一件重要的事,那麼我們就來講講 autoencoder 吧! Autoencoder 就是一個 unsupervised 方法,試圖學習...

鐵人賽 AI & Data DAY 15

技術 16 深度學習其實是一種 Representation learning

機器學習的技術已經發展了非常久的時間,我們有非常多的模型可以幫我們做預測,包含像是 regression、classification、clustering、s...

鐵人賽 AI & Data DAY 14

技術 15 為什麼要深?

接著我們就來到了蠻重要的問題,既然一個 hidden layer 的網路架構就可以逼近任何連續函數,那麼為什麼要深度學習? 對於這個問題,台大李宏毅老師有非常詳...

鐵人賽 AI & Data DAY 13

技術 14 淺層神經網路

為什麼大家到現在都這麼迷神經網路模型? 我想主因不是因為他是模擬生物而來,他有一些更扎實的數學特性。 我們前面講過各種線性模型,然後將他過渡到神經網路。 今天要...

鐵人賽 AI & Data DAY 12

技術 13 Kernel SVM 與 RBF network

我們前面介紹了線性模型跟基本的神經網路模型。 可能有的人會覺得我怎麼不放神經網路的圖,看數學式子看的很痛苦。 是的,我的確沒打算放圖。一來神經網路的圖在各大網站...

鐵人賽 AI & Data DAY 11

技術 12 從線性模型到神經網路

我們把線性模型們都大統一了。 接下來就要進入到令人興奮的神經網路模型了! 首先,我們先來介紹著名的感知器...嗯...前面不是介紹過了? 喔喔!對喔!他長這個...

鐵人賽 AI & Data DAY 10

技術 11 廣義線性模型

我們前面探討了不同的資料型態可以對應不同的迴歸模型。 不覺得每個迴歸模型都有那麼點相似的地方嗎? 線性迴歸: 羅吉斯迴歸: Poisson 迴歸: 在右手...

鐵人賽 AI & Data DAY 9

技術 10 從線性迴歸到 Poisson 迴歸

上次我們講完了線性迴歸跟羅吉斯迴歸的差異。 可是並不是每一種資料都是連續型的或是類別型的。 這次要來介紹 Poisson 迴歸,當你要預測的是計數型資料(cou...

鐵人賽 AI & Data DAY 8

技術 09 從線性迴歸到羅吉斯迴歸

我們從前面的模型演化可以了解一個機器學習模型可以怎麼樣衍生出其他的變體來解決問題。 現在我們要切換到另外一條跑道上,我們一樣是從線性迴歸模型出發,我們或許可以換...

鐵人賽 AI & Data DAY 7

技術 08 l2-regularized 線性模型

我們來回顧一下 SVM 模型。 他可以被進一步轉成 在 SVM 的陳述當中,有沒有發現 這部份看起來跟 regularization 一樣。後半部份...

鐵人賽 AI & Data DAY 6

技術 07 標準 SVM

雖然標題是說"標準" SVM,不過模型這種東西從來就沒有什麼標準,有的不過是變體。 所以這篇是要跟大家總結一下我們一般在用的 SVM 模型的...

鐵人賽 AI & Data DAY 5

技術 06 從 hard-margin SVM 到 soft-margin SVM

從前面的 kernel SVM 當中我們已經獲得了很強大的模型,可是他還是會有不足之處,像是當資料有雜訊的時候就容易將每個資料點都個別分開。 有時候我們反而希望...

鐵人賽 AI & Data DAY 4

技術 05 從 maximum-margin classifier 到 kernel SVM

注意:整篇文章極度數學高能!! 沒有把前一篇文章看完的朋友別擔心,我們會在開頭先回顧一下。在一番數學技巧的替換過後,我們的 maximum-margin cla...

鐵人賽 AI & Data DAY 3

技術 04 從感知器到 maximum-margin classifier

上次我們完成了感知器的介紹,感知器也有他相對應的學習演算法:perceptron learning algorithm (PLA)。 不過我們今天沒有要講 PL...

鐵人賽 AI & Data DAY 2

技術 03 從線性迴歸到感知器

感知器(perceptron)是在 1957 年就被發明出來的的模型,對電腦的發展或是人工智慧來說都是非常早期的。 感知器模型他是一個二元分類的分類器,他解的是...

活動 【政府補助】AI人工智慧應用系列就業班 — 實作AI醫療電子專題

訊號處理 x 嵌入式 x AI大數據機器學習 x APP開發 x 物聯網 AI智慧醫療電子專題 -> 成果發表暨就業媒合 本課程複製業界實務經驗,完...

活動 【艾鍗學院】∥政府補助∥AIoT智能物聯網平台開發工程師就業培訓 年後衝刺班!!

AI人工智慧與IoT物聯網正在翻轉世界! AIoT技術實戰就業班複製業界實務經驗,完整教你如何實現物聯網的感知層、網路層、應用層開發, 並結合Pytho...

鐵人賽 AI & Machine Learning DAY 6

技術 [Day6] Logistic Regression — 邏輯迴歸

Logistic Regression — 邏輯迴歸 前幾天我們介紹了第一個機器學習模型—線性迴歸,線性回歸的目的在於透過歷史資料來預測未來的資料。 而 log...

鐵人賽 AI & Machine Learning DAY 4

技術 [Day4] 梯度下降法(Gradient Descent)

梯度下降 昨天我們提到,令我們的函數為: 則誤差為: 其中 x 為輸入,y 為輸出。我們想要將誤差最小化,因此可以透過微分來求算。 首先,我們先來回想一下微分的...

鐵人賽 AI & Machine Learning DAY 2

技術 [Day2] 什麼是機器學習?

前言 為了透過電腦強大的運算力幫助人們解決問題,首先我們的問題是需要能夠被量化與分析的。例如:給定歷年的房屋資料,預測之後的房價變化;由使用者過去的瀏覽紀錄,猜...

鐵人賽 AI & Machine Learning DAY 1

技術 [Day 01] 深度學習環境安裝筆記 — 目錄

“在這裡我們不教你如何上太空,而是教你如何邁出第一步。” 雖然現在有許多好用的的框架跟環境可以讓普通人使用深度學習,在建置環境的過程中會遇到各種各式各樣的問...

鐵人賽 Big Data DAY 29
tensorflow 學習筆記 系列 第 29

技術 Tensorflow Day29 DCGAN with MNIST

今日目標 了解 DCGAN 使用 MNIST 資料集嘗試訓練 DCGAN Ipython Notebook 好讀完整版 Introduction Deep...

鐵人賽 Big Data DAY 28
tensorflow 學習筆記 系列 第 28

技術 Tensorflow Day28 Generative Adversarial Network with MNIST

今日目標 實作 Generative Adversarial Network 用 MNIST 手寫數字資料來訓練 Generative Adversarial...