ImageNet 競賽的冠軍們 ImageNet 每年舉辦的競賽(ILSVRC)這幾年產生了不少的CNN冠軍,歷屆比賽的模型演進非常精彩,簡單敘述如下: 20...
入門 照理講,我們應該先了解『神經網路』(Neural Network)概念,再談如何寫程式,但是,概念介紹內容有點硬,為了提高學習興趣,避免一開始就搞一堆數學...
前言 初接觸機器學習時,常會給幾個效能衡量指標搞得一個頭兩個大: 混淆矩陣(Confusion Matrix)。 準確率(Accuracy)、精確率(Prec...
前言 上一篇我們對『自然語言處理』(Natural Language Processing, NLP)有一個初步的認識,現在,我們再進一步認識,如何以 Neur...
前言 之後我們會討論到各種演算法及應用,使用到的函數及其參數會更多,因此,有必要先打好基礎,將 Keras 架構及習慣用法(Convention)弄清楚,以免迷...
XGBoost 今日學習目標 XGBoost 介紹 XGBoost 是什麼?為什麼它那麼強大? XGBoost 優點 比較兩種整體學習架構差異? Ba...
前言 Facebook AI 大師 Yann LeCun 在接受Quora專訪時說『GAN及其變形是近十年最有趣的想法(This, and the variat...
圖. 影像標題(Image Captioning),圖片來源:cs231n_2017_lecture11 Detection and Segmentation...
嗨!今天是第26天,之前介紹完了基本的機器學習概念了,這次要說明一個K-近鄰演算法(K Nearest Neighbor)! 主要內容: 什麼是KNN 如何用...
前言 再往下探究之前,我們輕鬆一點,先作點實驗,驗證上上篇的程式辨識準確率是否真的那麼高? 可否在應用系統上使用? 譬如,阿拉伯數字辨識率如果那麼高,我們是否可...
前言 在 Neural Network 的求解過程中,最重要而難懂的觀念應該是『梯度下降』(Gradient Descent)吧 ,我雖然在Day 03:Neu...
前言 上一次我們以十幾行程式完成阿拉伯數字的辨認,心情應該會小小波動一下(應該還不到小鹿亂撞的地步),如果我們以傳統的程式解法,不寫個幾百行,應該是不會罷手的,...
嗨,今天是第28天! 今天要來聊聊機器學習中的特徵標準化(normalization),包含: 什麼是特徵標準化? 為什麼要標準化? 特徵標準化怎麼做? 什...
前言 影像分割(Image Segmentation)也稱【語義分割】(Semantic Segmentation),它可以是物件偵測演算法 RCNN 的延伸...
隨機森林 (Random forest) 今日學習目標 隨機森林介紹 隨機森林的樹是如何生成?隨機森林的優點? 隨機森林如何處理分類問題? 隨機森林如何處理...
前言 上一篇談到準確率(Accuracy)、精確率(Precision)、召回率(Recall)、F1 Score,它們適用在不同的場景,接著我們再來討論『RO...
前言 之前,我們都在影像、語言等基礎應用上打轉,這次我們要來探討一個可應用在企業運作上的實例,銷售預測主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計...
RNN 的缺點 上篇介紹的RNN,它能夠額外考慮前面字句,來預測當前的字句,聽起來似乎已符合語言的特性了。但是,距離當前單字越遠的字句影響力會遞減,因為,下面的...
當開始興致勃勃的嘗試畫魔法陣,搭建神經網絡模型時,也許會遇到下面的情形: 哥布林之吶喊:我明明在訓練集表現很好啊,為什麼實際上線時結果卻崩潰了(抱頭) 那你...
Colab基本操作教學 匯入檔案 方法一:自行上傳檔案 from google colab import files #匯入套件 import pandas...
前言 原來還想多介紹幾個應用,但是,一直擔心忘了另一個RNN的變形 -- GRU,所以,還是先把它處理掉,才好 focus 在應用上。另一方面,LSTM 執行速...
範例程式 我們仍然作『阿拉伯數字的辨識』,比較 CNN 的作法與簡單的 Neural Network 有何不同。程式來自https://github.com/f...
寫了十幾天,今天總算鼓起勇氣參戰了。 前言 這一波人工智慧(Articial Intelligence,AI)風潮方興未艾,產學研界發表不少的具體研發成果,例如...
前言 Neural Networks 在影像、文字、語音等自然使用者介面(NUI)處理有突破性的發展,之前我們已經見證過影像及文字的辨識威力了,從這一篇開始,我...
前言 YOLO 是一個即時物件偵測(object detection)的模型,它處理速度可達 30 FPS,可以用在視訊上偵測移動的物體,平均準確度(mAP)可...
嗨,今天是鐵人賽的第27天啦!今天要介紹的是一個簡單的預測法:線性迴歸(linear regression)! 主要內容: 什麼是線性迴歸 建立隨機迴歸資料...
今天我們來討論深度學習中,專門在Run時間序列型資料的網路模型 - Recurrent Neural Network (RNN),在之前所討論到DNN跟CNN模...
前言 之前我們看到 Neural Network 在影像的辨識與解析的強大威力,接著,我們就要開始研究『自然語言處理』(Natural Language Pro...
前情提要 在 [精進魔法] Optimization:優化深度學習模型的技巧(上)一文中提及了下面三種優化 deep learning 模型的作法: Batc...
機器學習常犯錯的十件事 今日學習目標 探討機器學習常犯的十件錯誤 前言 人工智慧近年來成為任何產業熱門的話題之一,各公司積極地導入機器學習技術協助產業 AI...