ImageNet 競賽的冠軍們 ImageNet 每年舉辦的競賽(ILSVRC)這幾年產生了不少的CNN冠軍,歷屆比賽的模型演進非常精彩,簡單敘述如下: 20...
入門 照理講,我們應該先了解『神經網路』(Neural Network)概念,再談如何寫程式,但是,概念介紹內容有點硬,為了提高學習興趣,避免一開始就搞一堆數學...
前言 之後我們會討論到各種演算法及應用,使用到的函數及其參數會更多,因此,有必要先打好基礎,將 Keras 架構及習慣用法(Convention)弄清楚,以免迷...
2020年東京奧運全面使用5G技術勾勒應用場景、國際大廠爭相搶奪發語權…,5G商用近在咫尺 ,當未來場景全面就位,速度決勝一切,產業變革迫在眉睫,台灣產業該如何...
前言 上一篇我們對『自然語言處理』(Natural Language Processing, NLP)有一個初步的認識,現在,我們再進一步認識,如何以 Neur...
2019 Taoyuan ROS Summer School 為打造創新創業生態圈,發展桃園市人工智慧以及智慧機器人產業,桃園市政府青年事務局與深耕於自動化和機...
➤Google:AI需要殺手級的產品如今企業大廠無不爭先恐後投入這場AI大戰,深怕落後了,就錯過了龐大商機。目前AI最大的人才需求,是能讓AI技術實現廣泛應用...
IDEAS Show x AI 商品影像 AI 辨識 ! 為創新智慧商業科技應用價值,並提供消費者有感的智慧商業消費環境,以發展「智慧零售店」為發想,打造最佳消...
前言 初接觸機器學習時,常會給幾個效能衡量指標搞得一個頭兩個大: 混淆矩陣(Confusion Matrix)。 準確率(Accuracy)、精確率(Prec...
前言 Facebook AI 大師 Yann LeCun 在接受Quora專訪時說『GAN及其變形是近十年最有趣的想法(This, and the variat...
『自然使用者介面』(Natural User Interface, NUI) 這一波的人工智慧在自然使用者介面(Natural User Interface,...
XGBoost 今日學習目標 XGBoost 介紹 XGBoost 是什麼?為什麼它那麼強大? XGBoost 優點 比較兩種整體學習架構差異? Ba...
圖. 影像標題(Image Captioning),圖片來源:cs231n_2017_lecture11 Detection and Segmentation...
前言 再往下探究之前,我們輕鬆一點,先作點實驗,驗證上上篇的程式辨識準確率是否真的那麼高? 可否在應用系統上使用? 譬如,阿拉伯數字辨識率如果那麼高,我們是否可...
前言 上一次我們以十幾行程式完成阿拉伯數字的辨認,心情應該會小小波動一下(應該還不到小鹿亂撞的地步),如果我們以傳統的程式解法,不寫個幾百行,應該是不會罷手的,...
前言 在 Neural Network 的求解過程中,最重要而難懂的觀念應該是『梯度下降』(Gradient Descent)吧 ,我雖然在Day 03:Neu...
決策樹 (Decision tree) 今日學習目標 決策樹演算法介紹 決策樹如何生成? 如何處理分類問題? 如何處理迴歸問題? 實作決策樹分類器 觀...
前言 影像分割(Image Segmentation)也稱【語義分割】(Semantic Segmentation),它可以是物件偵測演算法 RCNN 的延伸...
前言 之前,我們都在影像、語言等基礎應用上打轉,這次我們要來探討一個可應用在企業運作上的實例,銷售預測主要是希望藉由過去的銷售記錄預測下一個週期的銷售量,在統計...
前言 上一篇談到準確率(Accuracy)、精確率(Precision)、召回率(Recall)、F1 Score,它們適用在不同的場景,接著我們再來討論『RO...
隨機森林 (Random forest) 今日學習目標 隨機森林介紹 隨機森林的樹是如何生成?隨機森林的優點? 隨機森林如何處理分類問題? 隨機森林如何處理...
RNN 的缺點 上篇介紹的RNN,它能夠額外考慮前面字句,來預測當前的字句,聽起來似乎已符合語言的特性了。但是,距離當前單字越遠的字句影響力會遞減,因為,下面的...
前言 原來還想多介紹幾個應用,但是,一直擔心忘了另一個RNN的變形 -- GRU,所以,還是先把它處理掉,才好 focus 在應用上。另一方面,LSTM 執行速...
範例程式 我們仍然作『阿拉伯數字的辨識』,比較 CNN 的作法與簡單的 Neural Network 有何不同。程式來自https://github.com/f...
寫了十幾天,今天總算鼓起勇氣參戰了。 前言 這一波人工智慧(Articial Intelligence,AI)風潮方興未艾,產學研界發表不少的具體研發成果,例如...
線性迴歸(Linear Regression) 今日學習目標 認識線性迴歸 透過機器學習來找出一條函式,來最佳化模型 兩種求解方法 線性迴歸程式手把手...
[魔法陣系列] Convolutional Neural Network(CNN)之術式解析 中提到 CNN 由下列所組成: Convolution Oper...
前言 Neural Networks 在影像、文字、語音等自然使用者介面(NUI)處理有突破性的發展,之前我們已經見證過影像及文字的辨識威力了,從這一篇開始,我...
前言 YOLO 是一個即時物件偵測(object detection)的模型,它處理速度可達 30 FPS,可以用在視訊上偵測移動的物體,平均準確度(mAP)可...
核模型 - 支持向量機 (SVM) 今日學習目標 SVM 分類器 何謂支持向量機? 非線性與線性? 多元分類支持向量機。 SVR 迴歸器 學習 SVR...