iT邦幫忙

deeplearning相關文章
共有 19 則文章
鐵人賽 Big Data DAY 12
tensorflow 學習筆記 系列 第 12

技術 Tensorflow Day12 儲存以及載入模型參數

今日目標 了解如何儲存訓練好的模型參數 儲存模型範例 載入模型範例 Github Ipython Notebook 好讀完整版 還記得當我們在定義模型的時候...

鐵人賽 Big Data DAY 9
tensorflow 學習筆記 系列 第 9

技術 Tensorflow Day9 卷積神經網路 (CNN) 分析 (2) - Filter, ReLU, MaxPolling

今日目標 了解過濾器 (Filter) 運作方式 了解 ReLU 激活函數 (Activation) 運作方式 了解最大池化器 MaxPooling 運作方式...

技術 Transfer Learning with Keras!

嗨,各位好久不見啦! 最近因為 系上學長要求(誤),開始學習遷移式學習(transfer learning)順便記錄過程。目前也還在學習中,所以有誤或有更專業方...

鐵人賽 Big Data DAY 29
tensorflow 學習筆記 系列 第 29

技術 Tensorflow Day29 DCGAN with MNIST

今日目標 了解 DCGAN 使用 MNIST 資料集嘗試訓練 DCGAN Ipython Notebook 好讀完整版 Introduction Deep...

鐵人賽 Big Data DAY 28
tensorflow 學習筆記 系列 第 28

技術 Tensorflow Day28 Generative Adversarial Network with MNIST

今日目標 實作 Generative Adversarial Network 用 MNIST 手寫數字資料來訓練 Generative Adversarial...

鐵人賽 Big Data DAY 18
tensorflow 學習筆記 系列 第 18

技術 Tensorflow Day18 Convolutional Autoencoder

今日目標 了解 Convolutional Autoencoder 實作 Deconvolutional layer 實作 Max Unpooling lay...

鐵人賽 Big Data DAY 10
tensorflow 學習筆記 系列 第 10

技術 Tensorflow Day10 卷積神經網路 (CNN) 分析 (3) 第二卷積層, 全連結層, dropout

今日目標 觀察第二個卷積層輸出 全連結層以及 dropout 用意 深度是啥米 第二卷積層輸出 前一篇中我們主要觀察了第一個卷積層的輸出以及內部結構.那我們...

鐵人賽 Big Data DAY 15
tensorflow 學習筆記 系列 第 15

技術 Tensorflow Day15 Autoencoder

今日目標 了解 Autoencoder 概念 了解 Autoencoder 用於無監督訓練 Autoencoder Autoencoder 是一種無監督 (...

鐵人賽 Big Data DAY 26
tensorflow 學習筆記 系列 第 26

技術 Tensorflow Day26 LSTM 內部結構介紹

今日目標 了解 LSTM 內部結構 介紹 之前提到了 LSTM 可以有效的解決 gradient vanishing 的問題,那到底其中的結構有什麼魔法呢?...

達標好文 技術 [筆記]深度學習(Deep Learning)-神經網路學習

前言 本相關筆記幾乎都來自於O'REILLY Deep Learning這本書籍,詳細內容有興趣的可以去網上購買。 在上一章主要講到了梯度和偏微分,這次主要解釋...

鐵人賽 Big Data DAY 11
tensorflow 學習筆記 系列 第 11

技術 Tensorflow Day11 MNIST CNN 各層視覺化分析

今日目標 建立三層卷積層的 CNN 使用 PCA 降維分析 使用 TSNE 降維分析 Github Ipython Notebook 好讀完整版 到現在為...

鐵人賽 Big Data DAY 16
tensorflow 學習筆記 系列 第 16

技術 Tensorflow Day16 Autoencoder 實作

今日目標 實作 Autoencoder 比較輸入以及輸出 Github Ipython Notebook 好讀完整版 實作 定義 weight 以及 bia...

鐵人賽 Big Data DAY 17
tensorflow 學習筆記 系列 第 17

技術 Tensorflow Day17 Sparse Autoencoder

今日目標 了解 Sparse Autoencoder 了解 KL divergence & L2 loss 實作 Sparse Autoencoder...

鐵人賽 Big Data DAY 25
tensorflow 學習筆記 系列 第 25

技術 Tensorflow Day25 Recurrent Neural Network with MNIST

今日目標 了解 RNN 用 MNIST 訓練 RNN 觀察 RNN 訓練的情形以及結果 Github Ipython Notebook 好讀完整版 Intr...

鐵人賽 Big Data DAY 19
tensorflow 學習筆記 系列 第 19

技術 Tensorflow Day19 Denoising Autoencoder

今日目標 了解 Denoising Autoencoder 訓練 Denoising Autoencoder 測試不同輸入情形下的 Denoising Aut...

鐵人賽 Big Data DAY 22
tensorflow 學習筆記 系列 第 22

技術 Tensorflow Day22 word2vec 介紹

今日目標 了解 word2vec 的概念 word2vec 簡介 word2vec 正如其名就是 word to vector 是一個能把文字變成向量的演...

技術 [筆記]深度學習(Deep Learning)-反向傳播

前言 上一篇介紹到的神經網路流程為 1.輸入 2.權重.偏權重 3.活化函數 4.重複2 ~ 3步驟(依網路深度) 5.輸出函數 6.損失函數 7.計算梯度,數...

技術 [筆記]深度學習(Deep Learning)-神經網路學習的優化

前言 筆記幾乎都來自於O'REILLY Deep Learning。 這次優化筆記講解完,大家也大概了解神經網路的基礎,下一次就要進入到捲積神經網路(CNN)。...

達標好文 技術 [筆記]深度學習(Deep Learning)-捲積神經網路

前言 這次要介紹捲積神經網路CNN,常用於取得影像特徵.辨識等等用途,這次簡單的介紹捲積網路,一樣使用O'REILLY Deep Learning書籍,但在捲積...