iT邦幫忙

llm相關文章
共有 208 則文章
鐵人賽 生成式 AI DAY 24

技術 【Day 24】- GraphRAG:革新檢索增強生成的新範式

摘要這篇文章介紹了一種名為 GraphRAG 的新型檢索增強生成技術,它由微軟研究團隊提出,旨在突破傳統 RAG 方法在處理複雜資訊時的局限性。GraphRA...

鐵人賽 生成式 AI DAY 23

技術 【Day 23】- Adaptive-RAG:動態檢索策略提高系統問答精準度

摘要這篇文件介紹了一種名為「Adaptive-RAG」的技術,它旨在提升問答系統的準確性和效率。Adaptive-RAG 的核心概念是根據使用者查詢的複雜度動...

鐵人賽 生成式 AI DAY 22

技術 【Day 22】- CRAG: 檢索增強生成的糾錯機制 - 提升大型語言模型問答精確度

摘要這篇文章介紹了一種名為「Corrective RAG (CRAG)」的技術,旨在提升大型語言模型(LLM)在問答系統中的準確性和可靠性。CRAG 的核心思...

鐵人賽 生成式 AI DAY 21

技術 【Day 21】- 從基礎到進階: 掌握RAG基礎並使用LangGraph實現Agentic RAG

摘要這篇文章探討了檢索增強生成 (Retrieval-Augmented Generation, RAG) 技術,它結合了資訊檢索和文本生成,以克服現有大型語...

鐵人賽 生成式 AI DAY 19

技術 【Day 19】- LangGraph 的記憶機制:提升 AI 助理的上下文理解能力

摘要這篇文章探討了 LangGraph 這個框架,它用於提升 AI 助理的記憶能力,並能有效管理對話歷史。文章首先說明了 AI 助理需要記憶功能的原因,以及記...

鐵人賽 生成式 AI DAY 18

技術 【Day 18】- LangGraph 與 LangFuse:打造 Agent 觀測系統全方位指南

摘要這篇文章探討了如何使用 LangGraph 與 LangFuse 打造全方位的 Agent 觀測系統。LangGraph 是一個用於構建複雜 AI 代理應...

鐵人賽 生成式 AI DAY 11

技術 day11 文字程式檔的智慧學習:讓LLM成為你的程式碼教學助手

前言 昨天和前天,我們使用網頁資料和CSV資料作為外部的資料源,今天我們會介紹使用txt檔案,或者是副檔名為py的檔案來進行匯入轉成向量,並作為資料源給LLM提...

鐵人賽 生成式 AI DAY 10

技術 day10 智能CSV分析器,讓LLM幫你分析與統整

前言 昨天我們利用網頁的資料來進行LLM的資訊擴充,今天我們嘗試不同的資料來源,這次我們試試看CSV檔案 正文 資料來源 我們使用政府的資料開放平台的低收入戶...

鐵人賽 生成式 AI DAY 17

技術 【Day 17】- 多代理系統設計: 監督者模式的應用與實踐

摘要這篇文章探討了多代理系統設計中監督者模式的應用和實踐。文章首先回顧了多代理系統的基本概念和協作模式,接著介紹了監督者模式的特性,並以台灣棒球和啦啦隊新聞處...

鐵人賽 生成式 AI DAY 16

技術 【Day 16】- Agentic Pattern:以多代理協作模式革新 AI 系統

摘要這篇文章探討了 多代理系統 在人工智能領域的應用,特別是 如何利用 LangGraph 框架來構建和管理多代理系統。文章首先介紹了多代理系統的基本概念,包...

鐵人賽 生成式 AI DAY 15

技術 【Day 15】- Agentic Design Pattern: Planning - 賦予 AI 自主規劃能力

摘要這篇文章主要介紹了 Agentic Design Pattern 中的 Planning 模式,它賦予 AI 自主規劃的能力,讓 AI 能夠處理那些難以預...

鐵人賽 生成式 AI DAY 14

技術 【Day 14】- 翻譯革新:從吳恩達的 Translation Agent 到 LangGraph 的智能協作模式

摘要這篇文章主要探討了「AI 代理」領域的最新進展,以吳恩達團隊推出的 Translation Agent 開源工具為例,展現了 AI 如何革新翻譯的效率和準...

鐵人賽 生成式 AI DAY 13

技術 【Day 13】- 進階 LLM 反思機制:Reflexion 技術的創新與應用

摘要這篇文章探討了大型語言模型(LLM)領域中的反思機制,特別是新興的 Reflexion 技術。它首先回顧了先前 Self-Refine 技術的局限性,例如...

鐵人賽 生成式 AI DAY 12

技術 【Day 12】- AI代理自我反思:深入探討 Self-Refine 技術與 LangGraph 實作

摘要這篇文章主要探討了 大型語言模型 (LLM) 的自我完善技術,特別是 Self-Refine 的概念和實作方法。文章從介紹 Reflection Agen...

鐵人賽 生成式 AI DAY 10

技術 【Day 10】從零到一:用實戰案例掌握 LangGraph Studio 開發 AI 代理

摘要本文介紹了 LangGraph Studio,一個專為 AI 代理應用程式開發設計的整合開發環境 (IDE)。文章首先介紹了 LangGraph Stud...

鐵人賽 生成式 AI DAY 8

技術 day8 LangChain RAG:資料庫建置到檢索生成解析

前言 昨天我們進行RAG的介紹、使用RAG的步驟與優劣勢,那麼今天我們將會介紹我們在LangChain使用RAG的詳細步驟,畢竟會需要外部資料源,我們之後會從資...

鐵人賽 生成式 AI DAY 7

技術 day7 RAG 的力量:將檢索與生成融合提升LLM的回應準確性

前言 之前我們有提到LangChain的結構 現在我們已經有Prompt、LLM、Chain現在我們要開始介紹Document的部分,我們會介紹提示工程的RAG...

鐵人賽 生成式 AI DAY 12

技術 Day12 - 壓榨你的GPU,讓使用率up up up:Batching

前言 - 什麼是Batching? 先前在 Day4 提到的吞吐量 (Throughput) 🚀 是伺服器在一定時間內可以處理的請求數量。透過增加吞吐量,可以同...

鐵人賽 生成式 AI DAY 11

技術 Day11 - 沒有什麼是一個GPU不能解決的......Model Parallelization

前言 這一章將介紹LLM在GPU上平行化使用的方法,這章內容比較少,但標題很長XD 如果運算上有什麼資源不夠的,沒有什麼是一個GPU不能解決的,如果有的話,那...

鐵人賽 生成式 AI DAY 10

技術 Day10 - 不用再手動分配計算資源?分散式計算 Ray Serve 介紹

前言 從這章開始,將進入推理加速相關技術的理論章節 🚀。 這些理論都已經都有被應用在一些知名框架當中,其實3分鐘就可以輕鬆應用了。但是如果客戶或面試官問說這些...

鐵人賽 生成式 AI DAY 9

技術 Day9 - 選擇適合你的中文local LLM

前言 這章來整理一下目前看到的繁體中文LLM,以及怎麼選擇適合自己任務的local LLM。 找local Model最重要的是模型的推理能力,模型對於特定任務...

鐵人賽 生成式 AI DAY 3
懶人救星:生成式AI 系列 第 3

技術 Day3-AI工具榜單大揭密:今年最值得關注的百大 AI 工具!

前言 2024年是AI創意開始爆發的一年,隨著GPT, Claude, Llama…等大型模型成功的發展,越來越多基於此技術的新創AI公司快速崛起。AI不再僅僅...

鐵人賽 生成式 AI DAY 6

技術 day6 LLM結構化輸出:精確控制與系統串接的利器

前言 前天和昨天,我們進行promptTemplate和langServe快速部屬api的操作範例,但今天介紹及說明另外一個核心功能,結構化輸出structur...

鐵人賽 生成式 AI DAY 5

技術 day5 LangServe快速部屬應用程式:兩人對話劇本產生器

前言 昨天我們進行PromptTemplate的解說,以及兩人對話劇本產生器的應用示範,我們今天會進行LnagServe的使用,並且嘗試把兩人對話劇本產生器部屬...

鐵人賽 生成式 AI DAY 2
懶人救星:生成式AI 系列 第 2

技術 Day2-科技始終來自於人性,告訴你什麼是 AI?

人工智慧(AI,Artificial Intelligence) 人工智慧是指模擬人類智慧的計算機系統。這些系統可以執行通常需要人類智能的任務,如視覺識別、語音...

鐵人賽 生成式 AI DAY 8

技術 Day8 - AI、LLM與水電消耗

前言 相信大家在學校時可能看過小型機房,而大型資料中心通常包含多個機房。筆者曾有參觀過較為正式的機房,除了冷氣很強之外,會有嚴謹的溫控設計,像是冷熱通道分離。進...

鐵人賽 生成式 AI DAY 4

技術 day4 PromptTemplates : 兩人對話劇本產生器

前言 昨天進行LangChain的核心功能Chain的使用,定義一系列的有順序的任務流程,那麼今天我們也會介紹另一個核心功能PromptTemplates,在任...

鐵人賽 生成式 AI DAY 6

技術 Day6 - 選擇適合你VRAM的模型

前言 傳統NLP模型比較小,只需要考慮compute bound的,但現在LLM模型很大了,基本上就是考驗memory bound的時代,這章將來介紹LLM與V...

鐵人賽 生成式 AI DAY 5

技術 Day5 - 一起認識NVIDIA GPU和它們的演化

前言 以前在infra的時代,都是一個人顧幾百台的server,其中當也幾台是GPU server,可惜當時只知道怎麼維運監控報修打雜;在學校時設備前人都弄好了...

鐵人賽 生成式 AI DAY 4

技術 Day4 - 你必須了解的推理計算評估指標

這一篇將介紹LLM服務有關推理計算的評估指標 (Computation evaluation metrics)。 這個分類是參考論文Beyond Efficie...