iT邦幫忙

azure machine learning相關文章
共有 103 則文章

技術 【Azure MLOps - 6】建立CD pipeline:把機器學習模型部署到staging area

延續上一篇文章,當CI pipeline執行結束後,模型會被下載到【pipeline published artifact區域】。接下來,就把【pipeline...

技術 【Azure MLOps - 5】執行Azure DevOps CI pipeline

上兩篇終於把CI pipeline建立完成,CI pipeline做的就是把資料科學家會在Azure Machine Learning (AML)執行的所有任務...

技術 【Azure MLOps - 4】使用Azure DevOps建立訓練模型的CI pipeline(下)

在上一篇【Azure MLOps - 3】使用Azure DevOps建立訓練模型的CI pipeline(上)中執行測試程式碼的任務,這篇會繼續建立後半部本篇...

鐵人賽 AI & Data DAY 30

技術 # Day30- Hugging Face 串接聊天機器人

昨天我們把 Hugging Face 的 model 部署到 Azure 上了,也成功用 Web API 來跑文本生成,今天我們就來用這支 API,串接到聊天機...

鐵人賽 AI & Data DAY 29

技術 # Day29- 部署 Hugging Face model

我們前幾天自己訓練的模型,都可以在 TrainingArguments 裡面加個參數 push_to_hub=True ,把模型推送到 Hugging Face...

鐵人賽 AI & Data DAY 28

技術 # Day28- Hugging Face Optimum Quantization

Quantization 是目前優化模型效能很常見的手法,簡單來說就是減少浮點數的精度範圍,使得模型更快更小,而我們可以透過 Optimum 很容易辦到這件事情...

鐵人賽 AI & Data DAY 27

技術 # Day27-Transformer 效能優化

這幾天玩下來,大家應該都有發現到一個問題,就是 Transformer 的效能不是太好,尤其你要在大吞吐量下運作,想必是非常的耗費運算資源。更不用說在不久的將來...

鐵人賽 AI & Data DAY 26

技術 # Day26- 當代QA系統的架構

昨天我們用 Hugging Face 做了QA ,但是大家想必發現了很麻煩的一件事情:每次都要把 context 送進去才行。這真的很麻煩,而且處理 conte...

鐵人賽 AI & Data DAY 25

技術 # Day25- Hugging Face 問答任務

很快地我們 Hugging Face 的旅程來到了最後一個任務:問答任務啦!Question answering 一直是自然語言處理中很困難的部份。最常使用的是...

鐵人賽 AI & Data DAY 24

技術 # Day24- Hugging Face Named Entity Recognition

今天我們來補充自然語言處理中的一個很重要的概念:Named Entity Recognition(NER)。 一般翻譯為命名實體辨識、命名實體識別,或也有人翻成...

鐵人賽 AI & Data DAY 23

技術 # Day23- Fine-tuned 摘要任務的 transformer

今天我們講怎麼 find-tuned 摘要任務,今天會很吃 GPU ,不一定每個人都能跑,不過也有比較節省 GPU 的寫法。 我們來用這個 dataset ,...

鐵人賽 AI & Data DAY 22

技術 # Day22-評價摘要好壞的演算法

評價摘要的好壞 我們用了兩個模型做了摘要,那麼有沒有辦法評價摘要的好壞呢?常見評價摘要的算法有兩種,一個是 BLEU,一個是 ROGUE。 BLEU 是一種...

鐵人賽 AI & Data DAY 21

技術 # Day21-Hugging Face 摘要任務入門

摘要(summarization)也是自然語言處理中很常見的任務之一,今天我們就來看看 Hugging Face 如何幫我們幫我們做摘要吧! Encoder-D...

鐵人賽 AI & Data DAY 20

技術 # Day20-Hugging Face 中文的文本生成

應觀眾要求,希望快點講中文的自然語言處理,於是就插撥了今天的內容。中研院的詞庫小組有在 Hugging Face 上傳大量的基於繁體中文訓練的模型,可以參考這邊...

鐵人賽 AI & Data DAY 19

技術 # Day19-Hugging Face 文本生成進階

今天我們來講講怎麼優化文本生成。 Greedy Search 所謂的貪婪搜尋,在 Hugging Face 就不用自己實做了,只要設定這樣子的參數就可以了:n...

鐵人賽 AI & Data DAY 18

技術 # Day18-Hugging Face 文本生成入門

今天我們來講文本生成(Text generation)。文本生成是迭代來完成的,預測「I have a pen, I have an ......」的下一個字機...

鐵人賽 AI & Data DAY 17

技術 # Day17-Transformer 的種類

Transformer 內有一組很關鍵的機制,是一種 encoder-decoder 的架構。 Encoder 主要扮演的角色是把輸入的一連串的 token 轉...

鐵人賽 AI & Data DAY 16

技術 # Day16- Fine-tune Transformer --- 訓練模型篇

我們把昨天的 dataset 做好分詞之後,就可以來訓練自己的模型啦! 載入 PyTorch 和使用 CUDA,然後再用 AutoModelForSequen...

鐵人賽 AI & Data DAY 15

技術 # Day15- Fine-tune Transformer --- 資料處理篇

這幾天我們做完了一個完整的文本分類的 transformer 了,但是我們做的內容,都是直接呼叫人家做好的 pre-trained model。其訓練的資料內容...

鐵人賽 AI & Data DAY 14

技術 # Day14-Hugging Face Transformer Pipeline 和 TF model

昨天我們做完了一個完整的文本分類的 transformer 了,也準確地預測具有負面意義的詩句,真的是太厲害了。今天我們來看看更方便的 Transformer...

鐵人賽 AI & Data DAY 13

技術 # Day13-Hugging Face Transformer 入門

Transformer 是當代自然語言處理最重要的技術了,如果您對於 Word2vec、RNN、seq2seq 等等之類的技術不太熟悉,那麼就先放著沒關係,之後...

鐵人賽 AI & Data DAY 12

技術 # Day12-Hugging Face Tokenizer

我們昨天講了一大堆的分詞理論,如果無法消化吸收也沒有關係,就當做是惡夢一場,忘了吧!今天我們來用 Hugging Face Tokenizer Library,...

鐵人賽 AI & Data DAY 11

技術 # Day11-當代的 Tokenizer algorithm

昨天我們提到了兩種古典的分詞分式:Character tokenization 和 Word tokenization。然後我們很快發現其盲點,Characte...

鐵人賽 AI & Data DAY 10

技術 # Day10-Tokenizer 入門

在自然語言處理的領域,tokenization 一般會翻譯做分詞,而 tokenizer 一般會翻譯成分詞器。但是在許多程式設計的領域,會把 tokenizat...

鐵人賽 AI & Data DAY 8

技術 # Day8-載入極巨大的 Dataset -- Arrow 篇

一般訓練模型上,都會建議採用 transfer learning ,可以參考 Day 1 的內容實務,可以節省更多的時間和運算資料。但是如果自己重頭訓練模型的時...

鐵人賽 AI & Data DAY 7

技術 # Day7-載入自己的 Dataset

昨天我們練習了用 Hugging Face Datasets Library 來把 Hugging Face Hub 上的 dataset 載下來,今天我們來試...

鐵人賽 AI & Data DAY 6

技術 # Day6-初探 Hugging Face Dataset Library

今天我們終於要再繼續寫程式了,沿續使用昨天的 poem_sentiment 這個 dataset。 Hugging Face Datasets Library...

鐵人賽 AI & Data DAY 5

技術 # Day5-Hugging Face Hub Dataset

還記得我們在第三天第四天做了的情感分析嗎?判斷句子是 Positive 還是 Negative 這是屬於 text classification 的範圍,算是自...

鐵人賽 AI & Data DAY 4

技術 # Day4-Hugging Face 雲端開發環境設定

在第一天有講過,如果本地端電腦沒有 GPU 的話,也可以考慮雲端環境。而實務上,因為雲端的高度彈性,往往會選用雲端環境來做開發測試。至於為什麼該使用雲端,這個又...

鐵人賽 AI & Data DAY 3

技術 # Day3-Hugging Face 本地端開發環境設定

由於自然語言的訓練往往非常的耗時,建議你有 GPU 會比較節省時間,當然沒有也是可以的,只是會等待比較長的時間。如果你本地的電腦有 GPU 環境的話,那麼我們就...