延續上一篇文章,當CI pipeline執行結束後,模型會被下載到【pipeline published artifact區域】。接下來,就把【pipeline...
上兩篇終於把CI pipeline建立完成,CI pipeline做的就是把資料科學家會在Azure Machine Learning (AML)執行的所有任務...
在上一篇【Azure MLOps - 3】使用Azure DevOps建立訓練模型的CI pipeline(上)中執行測試程式碼的任務,這篇會繼續建立後半部本篇...
昨天我們把 Hugging Face 的 model 部署到 Azure 上了,也成功用 Web API 來跑文本生成,今天我們就來用這支 API,串接到聊天機...
我們前幾天自己訓練的模型,都可以在 TrainingArguments 裡面加個參數 push_to_hub=True ,把模型推送到 Hugging Face...
Quantization 是目前優化模型效能很常見的手法,簡單來說就是減少浮點數的精度範圍,使得模型更快更小,而我們可以透過 Optimum 很容易辦到這件事情...
這幾天玩下來,大家應該都有發現到一個問題,就是 Transformer 的效能不是太好,尤其你要在大吞吐量下運作,想必是非常的耗費運算資源。更不用說在不久的將來...
昨天我們用 Hugging Face 做了QA ,但是大家想必發現了很麻煩的一件事情:每次都要把 context 送進去才行。這真的很麻煩,而且處理 conte...
很快地我們 Hugging Face 的旅程來到了最後一個任務:問答任務啦!Question answering 一直是自然語言處理中很困難的部份。最常使用的是...
今天我們來補充自然語言處理中的一個很重要的概念:Named Entity Recognition(NER)。 一般翻譯為命名實體辨識、命名實體識別,或也有人翻成...
今天我們講怎麼 find-tuned 摘要任務,今天會很吃 GPU ,不一定每個人都能跑,不過也有比較節省 GPU 的寫法。 我們來用這個 dataset ,...
評價摘要的好壞 我們用了兩個模型做了摘要,那麼有沒有辦法評價摘要的好壞呢?常見評價摘要的算法有兩種,一個是 BLEU,一個是 ROGUE。 BLEU 是一種...
摘要(summarization)也是自然語言處理中很常見的任務之一,今天我們就來看看 Hugging Face 如何幫我們幫我們做摘要吧! Encoder-D...
應觀眾要求,希望快點講中文的自然語言處理,於是就插撥了今天的內容。中研院的詞庫小組有在 Hugging Face 上傳大量的基於繁體中文訓練的模型,可以參考這邊...
今天我們來講講怎麼優化文本生成。 Greedy Search 所謂的貪婪搜尋,在 Hugging Face 就不用自己實做了,只要設定這樣子的參數就可以了:n...
今天我們來講文本生成(Text generation)。文本生成是迭代來完成的,預測「I have a pen, I have an ......」的下一個字機...
Transformer 內有一組很關鍵的機制,是一種 encoder-decoder 的架構。 Encoder 主要扮演的角色是把輸入的一連串的 token 轉...
我們把昨天的 dataset 做好分詞之後,就可以來訓練自己的模型啦! 載入 PyTorch 和使用 CUDA,然後再用 AutoModelForSequen...
這幾天我們做完了一個完整的文本分類的 transformer 了,但是我們做的內容,都是直接呼叫人家做好的 pre-trained model。其訓練的資料內容...
昨天我們做完了一個完整的文本分類的 transformer 了,也準確地預測具有負面意義的詩句,真的是太厲害了。今天我們來看看更方便的 Transformer...
Transformer 是當代自然語言處理最重要的技術了,如果您對於 Word2vec、RNN、seq2seq 等等之類的技術不太熟悉,那麼就先放著沒關係,之後...
我們昨天講了一大堆的分詞理論,如果無法消化吸收也沒有關係,就當做是惡夢一場,忘了吧!今天我們來用 Hugging Face Tokenizer Library,...
昨天我們提到了兩種古典的分詞分式:Character tokenization 和 Word tokenization。然後我們很快發現其盲點,Characte...
在自然語言處理的領域,tokenization 一般會翻譯做分詞,而 tokenizer 一般會翻譯成分詞器。但是在許多程式設計的領域,會把 tokenizat...
一般訓練模型上,都會建議採用 transfer learning ,可以參考 Day 1 的內容實務,可以節省更多的時間和運算資料。但是如果自己重頭訓練模型的時...
昨天我們練習了用 Hugging Face Datasets Library 來把 Hugging Face Hub 上的 dataset 載下來,今天我們來試...
今天我們終於要再繼續寫程式了,沿續使用昨天的 poem_sentiment 這個 dataset。 Hugging Face Datasets Library...
還記得我們在第三天第四天做了的情感分析嗎?判斷句子是 Positive 還是 Negative 這是屬於 text classification 的範圍,算是自...
在第一天有講過,如果本地端電腦沒有 GPU 的話,也可以考慮雲端環境。而實務上,因為雲端的高度彈性,往往會選用雲端環境來做開發測試。至於為什麼該使用雲端,這個又...
由於自然語言的訓練往往非常的耗時,建議你有 GPU 會比較節省時間,當然沒有也是可以的,只是會等待比較長的時間。如果你本地的電腦有 GPU 環境的話,那麼我們就...