前言 今天會將昨天訓練好的翻譯模型在測試資料集進行預測,若進度符合期待,將會使用 BLEU 分數來評估模型的翻譯能力,關於此評測機制的詳細原理與範例程式碼可見下...
前言 今天是個美麗的錯誤,本來預計將昨日寫好的 Encoder 、Decoder 、 LuongAttention 類別整合進單一個繼承自 tensorflow...
前言 今天的任務只有一個:採用物件導向設計法將附帶注意力機制的 seq2seq 神經網絡封裝起來 淺談物件導向設計的封裝概念 物件導向程式設計( object-...
前言 今天繼續我們未完成的建模大業吧! 我們要建立的seq2seq模型由LSTM編碼器與解碼器串接而成: 寫一個簡單的seq2seq網絡吧-續 我們使用 K...
前言 我們緊接著切入 RNN 為架構的編碼器-解碼器。 在seq2seq之前 RNN Encoder-Decoder 在 Google 正式提出 seq2seq...
前言 Google 在2016年公開宣布翻譯系統的全面改革,一改沿用多年的 Phrase-Based Statistical Machine Translati...
一. Sequence to Sequence 在說明transformer之前,先介紹一下何謂Sequence to Sequence的模型。Sequence...
前五天,我們講解了BERT模型的核心概念、輸入輸出以及模型的類型,現在讓我們進入模型的結構、原理部分,來談一談作為BERT模型的原始架構的Transformer...
RNN問題及解法 RNN 有字數限制, 最多到200字, 超過效果不好。The fall of RNN / LSTM 針對基於CNN和RNN的Seq2Seq模型...