iT邦幫忙

machine learning相關文章
共有 744 則文章
鐵人賽 AI & Data DAY 25

技術 [從Keras框架與數學概念了解機器學習] - 25. 必學概念 - Logistic Regression Multi-class Classification

上一篇文章提到了 logistic single classification,解釋如何實現的一些細節。接下來要探索的是邏輯斯多類別分類。 如果Logisti...

鐵人賽 AI & Data DAY 24
ML From Scratch 系列 第 24

技術 [Day 24] Recurrent Neural Network — 背後理論

Prerequisite 因為 Recurrent Neural Network (RNN) 的每個時間步都具有一個循環連接,將前一時間步的輸出作為當前時間步...

鐵人賽 AI & Data DAY 24

技術 [從Keras框架與數學概念了解機器學習] - 24. 必學概念: Logistic Regression Classification

將概念擺在這個位置的目的,就是希望能夠呼應建構keras模型時的運作,並於自己呼叫keras API 時,知道自己在做什麼。 當概念在腦海裡,搭配前面的章節,...

鐵人賽 AI & Data DAY 11

技術 [Day 11] Partial Dependence Plot:探索特徵對預測值的影響

Partial Dependence Plot(PDP)是要觀察每一個自變數的變化是如何影響預測表現,它可以快速地分析自變數與目標變數之間的關係。而昨天所提的...

鐵人賽 AI & Data DAY 9

技術 Day9-決策樹 (Decision Trees)

主要用於分類,也可以改為回歸樹(不建議),今天只討論單顆決測樹,明天會學習多顆決策樹組合成的隨機森林 決策樹原理 對資料重複進行二元分割,形成樹狀結構 根...

鐵人賽 AI & Data DAY 23
ML From Scratch 系列 第 23

技術 [Day 23] Autoencoder — 解決真實問題

第 23 天了 !!! 我們要透過 Autoencoder 解決臉部辨識的問題。 Dataset 資料集的部分來自 Kaggle 中 Labelled Face...

鐵人賽 AI & Data DAY 10

技術 [Day 10] Permutation Importance:從特徵重要性角度解釋整個模型行為

全局模型解釋是試圖理解整個模型的行為,而不僅僅是對單個預測進行解釋。Permutation importance 方法就是一種廣泛用於評估機器學習模型特徵重要性...

鐵人賽 AI & Data DAY 8

技術 Day8-SGDregressor (Stochastic Gradient Descent Regressor)

前幾天的迴歸模型中,我們希望找到一個函數能最好的表達因變數與自變數之間的關係,而尋找這個函數的方法就是定義損失函數(loss function)或稱成本函數(...

鐵人賽 AI & Data DAY 23

技術 [從Keras框架與數學概念了解機器學習] - 23.呼應keras框架的深度學習

從 keras 框架運作一路看過來,機器在做學習會有個核心概念,這邊會展現出來讓前後關聯可以串通。 機器學習和很多著名的預測方法如貝氏理論、德爾菲法論等等,都...

鐵人賽 AI & Data DAY 9

技術 [Day 9] 基於樹狀結構的XAI方法:決策樹的可解釋性

決策樹 決策樹是一種監督式學習演算法,用於解決分類或迴歸問題。該方法透過對訓練集資料的分析來建構一棵樹狀結構的模型,其中每個內部節點都代表一個特徵,每個葉子節點...

鐵人賽 AI & Data DAY 22
ML From Scratch 系列 第 22

技術 [Day 22] Autoencoder — 主題實作

昨天有簡單敘述一下 Autoencoder 的背後理論。 Autoencoder 是一種神經網絡架構,主要用於無監督學習和特徵提取。 它的主要目標是將輸入數據編...

鐵人賽 AI & Data DAY 22

技術 [從Keras框架與數學概念了解機器學習] - 22. Model Container框架介面

當處理的目標是多模型組成,我們可以訓練各種模型至不同的Server 以增加執行與管理的效能: 如果這些訓練好的模型,未來要串接起來,做生成式資料產出,可能會做...

鐵人賽 AI & Data DAY 7

技術 Day7-邏輯回歸 (Logistic Regression)

前幾天有提過的線性回歸是用來預測一個連續的值,而今天要學的邏輯回歸則是用來做分類用的 線性回歸 V.S. 邏輯回歸 線性回歸:找到一條線,讓data盡可...

鐵人賽 AI & Data DAY 8

技術 [Day 8] 解釋線性模型:探索線性迴歸和邏輯迴歸的可解釋性

線性迴歸模型 線性迴歸是一種統計學方法,用於建立自變數(x)和應變數(y)之間的線性關係模型。線性迴歸假設應變數是由一個或多個自變數線性組合而成的,且自變數之間...

鐵人賽 AI & Data DAY 21
ML From Scratch 系列 第 21

技術 [Day 21] Autoencoder — 背後理論

由於數學函式有顯示不出來的問題,文章內容請至此閱讀

鐵人賽 AI & Data DAY 21

技術 [從Keras框架與數學概念了解機器學習] - 21. 實例應用-集團銷售資料分析

經過前20節的文章,了解模型訓練與預測相關運作後,接著實例應用並比較幾種損失函數與optimizer的搭配比較。這邊拿某集團企業的銷售資料訂單來做訓練範例。...

鐵人賽 AI & Data DAY 6

技術 Day6-多項式回歸(Polynomial Regression)

在前幾天的筆記中有介紹過線性回歸(Linear Regression),線性回歸中的因變數與自變數呈現直線關係(線性關係),但實際上直線並不一定能很好的展現因...

鐵人賽 AI & Data DAY 7

技術 [Day 7] KNN與XAI:從鄰居中找出模型的決策邏輯

KNN 是一種監督式學習算法,它可以用於分類和迴歸問題。在分類問題中,KNN 透過找到最近的 k 個鄰居取多數決來預測一個新樣本的類別。在迴歸問題中,KNN 則...

鐵人賽 AI & Data DAY 20
ML From Scratch 系列 第 20

技術 [Day 20] Neural Network — 解決真實問題

今天我們透過使用 Neural Network 來完成 Natural Language Processing with Disaster Tweets Da...

鐵人賽 AI & Data DAY 20

技術 [從Keras框架與數學概念了解機器學習] - 20. 使用 callbacks.ModelCheckpoint 求最佳模型

於此先了解一下 compiler 的 metrics 在模型fit之後的數量變化。 範例一,預設 metrics 內容 from tensorflow.k...

鐵人賽 AI & Data DAY 5

技術 Day5-線性回歸(Linear Regression)與L1、L2 regularization & Elastic net實作 + jupyter notebook路徑&瀏覽器設定教學

前兩天介紹了線性回歸和幾種正規化方法的概念,今天來講要如何使用python實作,以及幾種常用參數介紹 環境建置 在開始之前先講一下我所使用的環境! Ana...

鐵人賽 AI & Data DAY 6

技術 [Day 6] 非監督學習也能做到可解釋性?探索XAI在非監督學習中的應用

由於非監督學習模型通常沒有像監督學習中的標籤可使用,因此非監督學習模型的可解釋性通常是透過資料視覺化和數據分析來實現。以下為各位整理非監督學習中可解釋性的一些例...

鐵人賽 AI & Data DAY 19
ML From Scratch 系列 第 19

技術 [Day 19] Neural Network — 主題實作

今天我們要實做 Feed Forward Network 前饋式神經網路是一種人工神經網路結構,也稱為前饋網路或前向傳播網路。 它是一種最基本的神經網路結構,通...

鐵人賽 AI & Data DAY 19

技術 [從Keras框架與數學概念了解機器學習] - 19. 模型的 compute_loss 與 metrics

從上一節可以看出,在模型做compiler時,可以指定 loss function,也能自定義客製的 loss function。 一旦 loss funct...

鐵人賽 AI & Data DAY 5

技術 [Day 5] 淺談XAI與傳統機器學習的區別

機器學習是一種透過對大量數據進行訓練和不斷優化演算法的方法,目的是提高預測準確性和決策可靠性。透過處理龐大的數據集,機器學習模型能夠自動學習並擬合出數據中的模式...

鐵人賽 AI & Data DAY 3

技術 Day3-線性回歸 (Linear Regression)

說起線性回歸,這是我在學機器學習時碰到的第一個演算法,今天先簡單介紹線性回歸,明天會討論L1、L2正規化 Regression 在講線性回歸之前,先講講回歸...

鐵人賽 AI & Data DAY 18
ML From Scratch 系列 第 18

技術 [Day 18] Neural Network — 背後理論

由於數學函式有顯示不出來的問題,文章內容請至此閱讀

鐵人賽 AI & Data DAY 3

技術 [Day 03] - 從 Python 🐍 到 Rust 🦀|上工啦!安裝、環境與函式庫相依管理

今日份 Ferris 雖然才第三天,但我發現可愛又切題的 Ferris 真的不好找,腦中瞬間出現 Panik 慌章迷因,還好找到了這張不要慌張的貼紙,趕快貼在頭...

鐵人賽 AI & Data DAY 18

技術 [從Keras框架與數學概念了解機器學習] - 18. loss function 的使用與自定義方式

模型在做Compiler時,指定 loss function ,如下: model.compile(optimizer="rmsprop"...

鐵人賽 AI & Data DAY 4

技術 [Day 4] LIME vs. SHAP:哪種XAI解釋方法更適合你?

LIME 和 SHAP 都是機器學習中的解釋性方法,它們的共同點是都適用於模型無關性(Model Agnostic),並透過資料來解釋模型的預測結果。如果不想深...