iT邦幫忙

deep learning相關文章
共有 90 則文章
Towards Tensorflow 2.0 系列 第 30

技術 [Day-30] Transfer learning & Model Serving

今天是鐵人賽的最後一天,我想說來聊聊 Transferring learning 以及 Model serving。今天也會有簡單的Colab實作 (Trans...

Towards Tensorflow 2.0 系列 第 29

技術 [Day-29] 增強式學習 (DQN) - 股票操作

昨天已經簡單介紹了 RL、以及 DQN。今天我們來實作增強式學習中的 Deep Q Network 預測股票 (TSMC,俗稱 十萬青年十萬肝,GG輪班救台灣)...

Towards Tensorflow 2.0 系列 第 28

技術 [Day-28] 增強式學習 (Reinforcement learning) 介紹

今天我們來聊聊 增強式學習 (Reinforcement learning),一個最近也很 “潮” 的演算法。 自從 Alpha Go擊敗人類後開始,大家開始重...

Towards Tensorflow 2.0 系列 第 27

技術 [Day-27] 生成對抗網路 (GAN) 實作 Part II

今天我們來實際來跑簡單的Dataset,就是 DL 101 資料集 - MNIST。透過較為簡單的Dataset 來理解像GAN這種相對難的演算法,應該能較容易...

Towards Tensorflow 2.0 系列 第 26

技術 [Day-26] 生成對抗網路 (GAN) 實作 Part I

今天我們來實作GAN,簡單複習一下,GAN的Component 有 Generator 以及 Discriminiator 。 而 Generator 任務就...

Towards Tensorflow 2.0 系列 第 25

技術 [Day-25] 生成對抗網路 (GAN) 介紹

今天我們來討論最近很流行的GAN,而最近很多新聞或者很多Youtuber都在討論他的應用,Ex: DeepFake 或者一些人像修圖應用。都是GAN的應用。 G...

Towards Tensorflow 2.0 系列 第 24

技術 [Day-24] VAE(Variational AutoEncoder) 實作

今天我們來討論一個進化的AutoEncoder - Variational AutoEncoder。先回顧一下AutoEncoder的架構,AutoEncode...

Towards Tensorflow 2.0 系列 第 23

技術 [Day 23] AutoEnoder 實作

今天來實作昨天討論的AutoEncoder,簡單複習一下,AutoEndoer的架構其實就如同下圖 source Input 資料後,會放到Neural Ne...

Towards Tensorflow 2.0 系列 第 22

技術 [Day-22] Unsupervised Learning - AutoEnocder介紹

今天開始,我們來聊聊非監督式的學習。前面所提的演算法,大部分都是監督式學習,也就是通常都是Label好的資訊 (Ex: 透過已經蒐集到的股價資訊或者已經Labe...

Towards Tensorflow 2.0 系列 第 21

技術 [Day-21] Wide & Deep 推薦系統實作

今天討論的主題主要是Google這篇曾經在2016年release 在Google Play的app上所做的推薦系統,而他有被open source 在 Te...

鐵人賽 自我挑戰組 DAY 19

技術 [Day 19] Rust Actix Python 程式呼叫 (2)

今天要帶各位繼續昨天沒完成的功能,也就是程式呼叫和 actix webservice 的 api 串再一起,那麼經過我稍微摸索一下發現其實不難那就讓我們開始吧,...

鐵人賽 自我挑戰組 DAY 18

技術 [Day 18] Rust Actix Python 程式呼叫 (1)

大家好,今天要帶各位做的事情非常有趣,我們要用 Rust 呼叫一支 python 的翻譯程式,強者我朋友寫的中翻英的深度學習程式。 首先我們需要準備一些前置作業...

Towards Tensorflow 2.0 系列 第 19

技術 [Day-19] BERT 初探

Multi-label Text Classification using BERT – The Mighty Transformer 今天要來芝麻街上英文課...

Towards Tensorflow 2.0 系列 第 18

技術 [Day-18] LSTM - 股價預測 (Data: 台灣50 )

今天來嘗試另外一個LSTM經典案例 - 股票預測,股票也是時間序列型資料!過去,金融業希望能找出一個強而有力的模型,不管預測股票或者期貨等等標的。但,似乎目前都...

Towards Tensorflow 2.0 系列 第 17

技術 [Day-17] LSTM - Sentiment Analysis (Data: Twitter)

今天我們來討論LSTM的應用,而其中一個最經典的案例就是情感分析(Sentiment Analysis)。而什麼是情感分析呢? 透過NLP或者Deep lear...

Towards Tensorflow 2.0 系列 第 16

技術 [Day-16] RNN - LSTM介紹

今天我們來討論深度學習中,專門在Run時間序列型資料的網路模型 - Recurrent Neural Network (RNN),在之前所討論到DNN跟CNN模...

鐵人賽 自我挑戰組 DAY 14

技術 [Day 14] Intro to Tensorflow (2)

運作 我們先來看 Tensorflow 的運作流程: Python 前端透過 Tensorflow 核心執行系統把產生的 DAG 圖分配到不同的裝置,增加...

Towards Tensorflow 2.0 系列 第 15

技術 [Day-15] CNN - ResNet 實作

當今天層數越疊越深,若不做任何的處理機制,準確度其實是會越來越糟糕!因為當疊層數疊超過一個層數,會發生像Gradient vanishing或者說Degrada...

Towards Tensorflow 2.0 系列 第 14

技術 [Day-14] CNN - VGG 實作

今天我們來使用TF 2.0來實作VGG 16,那為什麼選擇VGG 16呢?雖然VGG 16並未拿下當年ILSVRC 的分類比賽的冠軍 (當年由Google所發明...

鐵人賽 自我挑戰組 DAY 12

技術 [Day 12] Intro to Tensorflow (1)

前言 因爲之前 Google 有推出 ml study jams,因此整理一些部分內容的筆記來記錄以下心得。 緣起 由 Google 提供的開源程式庫,Goog...

Towards Tensorflow 2.0 系列 第 13

技術 [Day-13] CNN介紹

今天我們來討論Deep learning經典的模型之一 - Convolutional Neural Network (CNN)的架構。目前CNN被大量使用的影...

Towards Tensorflow 2.0 系列 第 12

技術 [Day-12] TF.Keras api & Customized

今天的話,我們來討論一下tf.keras的api。首先,今天要討論的tf.keras與我們所熟知的keras是不太一樣的,以前我們所使用的keras,他的bac...

Towards Tensorflow 2.0 系列 第 10

技術 [Day-10] Overfit & Underfit

今天我們來討論一下Overfit以及Underfit的議題 (也是面試很喜歡討論的議題)。針對Overfit跟Underfit我們可以透過下圖很直接了斷的看資料...

Towards Tensorflow 2.0 系列 第 9

技術 [Day-9] Deep Neural Network (Lab: Fashion-MNIST)

今天的話,我們用更貼近TF的語言來做DNN,Data的部分使用TF.Keras api裡面的資料來做使用。TF.Keras dataset包含有 CIFAR 1...

Towards Tensorflow 2.0 系列 第 8

技術 [Day-8] Deep Neural Network (Lab: Airbnb)

在說明Deep Neural Nework,我們簡單的討論一下DL介紹。從最早DL從Perceptron開始,Perceptron是只有一個neural,其實就...

Towards Tensorflow 2.0 系列 第 7

技術 [Day-7] 從Gradient Descent to Optimizer

上一篇有說明Linear regression利用SGD來train,今天我們就把一些相關概念一次解釋清楚,之後在train模型,或者自己運用在自己的case上...

Towards Tensorflow 2.0 系列 第 6

技術 [Day-6] Tensorflow Linear regression

一般來說,學習Deep learning都會從最簡單的Linear regression開始。而在實務上,當我們有一個簡單的預測數值的case,Ex: 股價、人...

Towards Tensorflow 2.0 系列 第 4

技術 [Day-4] Tensorflow 基本語法 - Part III

今天會開始說明一下資料處理及數值運算。接下來就會開始進入基本ML及DL了。大夥撐著!把一些基本語法弄熟,之後會更容易上手,且更知道如何去修改一些tutorial...

鐵人賽 AI & Data DAY 2

技術 回歸與分類-ML問題的兩大分類

在上一篇文中,我們介紹了ML問題的兩個主要分類。現在讓我們更詳細的來深入學習這兩者的差別吧! 回歸與分類   回到上篇文章的餐廳例子,我們想要利用客人帳單的...

技術 [Day - 17]深度學習概論6(人工神經網路)

人工神經網路基礎型態是前向全連接網路,同時擁有多種變型,這些變形構成了目前深度學習的主要內容。 **卷積網路(CNN)**屬於部分連接網路,是深度學習核心結構之...