決策樹 用於分類和回歸問題。 混亂評估指標 Information Gain (資訊獲利) 衡量了使用某個特徵分割後熵的減少 熵是衡量不確定性的指標。...
CNN的概念圖如下: ( 圖片來源:https://reurl.cc/l7g1LY ) Convolution Layer 卷積層 卷積的主要概念就是特徵擷...
是一種決策樹 決策樹 根據特徵進行分割(同子集內盡量相似) 重複分割直到達到設定的深度 建構決策樹 對決策樹進行遍歷,得出結果 CART流程 所有的樹...
強化學習概論 讓智慧型代理人/智慧體/智能體(intelligent agent)通過與環境的交互學習如何做出決策,以最大化一個獎勵信號。它通常涉及到Agent...
監督式學習(分類-Binary、演繹法) 分類理論(Binary) 通常可以分為二元分類(Binary Classification)和多類別分類(Multic...
前言 在前面【Day 6】回歸與分類 Regression & Classification 的文章中,了解到我們用模型主要來處理的問題任務,也就是回歸...
前言 前面幾天提到過,當一個模型的參數較多,會導致模型複雜度過高,這會讓模型在訓練資料的擬和表現很好,但在新的陌生資料上 ( 測試資料 ) 表現不佳,就會出現過...
是一種基於機率的分類器 貝氏定理 Bayes’ Theorem 計算在已知一些條件下,某事件的發生機率 通常事件A在事件B已發生的條件下發生的機率,與...
前言 昨天提到了模型欠缺擬和與過度擬和的問題,今天就要針對這兩個問題探討兩個評估模型效能的指標,分別是偏差 ( Bias ) 和方差 ( variance ),...
非監督式學習(分群-距離、相似特徵、歸納法) 分群演算法: K-Means 聚類:將數據分為 K 個不同的群集,每個群集由其內部的數據點的相似性來定義。...
利用弱分類器(決策樹)迭代訓練或得強分類器,其具有訓練效果好、不易過擬合等優點。 LightGBM V.S. XGBoost 圖源: https://re...
【Day 21】欠缺擬和與過度擬和 Underfitting & Overfitting 前言 在機器學習中,欠缺擬和 ( Underfitting )...
可以用來降維(dimension reduction),利用原有的特徵組合成新的特徵組,以達到降維的目的,同時保留住資料中的重要資訊 基本上它的目標就是將...
前言 學習和應用機器學習和人工智慧技術,以改進股票分析和預測的準確性。 實作機器學習模型,以預測股票價格和趨勢。 說明 當學習和應用機器學習和人工智慧技術以...
分群理論 群內差異小,群間差異大 找出比較相似的資料聚集在一起,形成集群(Cluster) 相似性的依據是採用歐式距離,相對距離愈近、相似程度越高,被歸類至同...
前言 昨天提到如何算出評估模型的各種驗證指標,今天就要利用驗證指標中的兩個指標,這兩個指標都是針對預測為陽性 ( 1 ) 時的情況下做比率的計算,一個是召回率...
點與點之間的距離 K-NN依照點與點之間的距離來計算點之間的相似性 通常使用的距離度量是歐氏距離(Euclidean Distance),但根據實際情況,也可...
決策邊界(Decision Boundary) 分類問題: 二元或多元分類問題 二元分類: 決策邊界是一條線、曲線或超平面 多元分類: 決策邊界是多維...
終於進入機器學習的實作階段啦,今天要來用鳶尾花資料集介紹一下羅吉斯回歸的作法。 如果覺得很難懂或很無聊再留言跟我說一下耶,寫程式要寫得好玩真的有點難@@ 今天...
前言 當我們要評估一名運動員的好壞,就會針對一些體能項目做評估,像是肌耐力、爆發力、彈跳力等,這些項目也可以稱做是衡量球員水準的指標,同樣的如果我們要評估一個模...
將所有樣本中相近得樣本點組成一個群組,一層一層往上堆疊,直至所有的樣本皆被分成一個群組為止 Hierarchical Clustering 透過將最接近的...
支援向量機(Support Vector Machine,SVM) 用於監督式學習中的分類和回歸 找到一個超平面將不同類別的數據點分開,同時最大化兩個類別之間...
總的來說就是物以類聚 K-means Clustering 將數據集中的數據點分成不同群組,以便相似的數據點彼此靠近 選擇K值: 決定要將資料分成...
前言 在訓練完我們的模型之後,通常會用測試資料給我們的模型做測試,評估模型在測試資料上的表現,那要用什麼來評判這個模型的好壞呢?於是我們就用一些驗證指標 ( V...
貝氏定理 P(A∣B) = P(B∣A)⋅P(A)/P(B) P(A∣B):表示在事件B發生的條件下,事件A發生的機率,稱為後驗機率。 P(B∣A):表示在...
邏輯迴歸 (Logistic Regression) 分類度量 混淆矩陣(Confusion Matrix) 混淆矩陣包括真正例(True Positives,...
kernel trick 作天的SVM跟SVR有提到可以用kernel function將資料映射到高維空間中 解決的問題:當資料在原始空間中無法被線性分...
前言 交叉驗證 ( Cross-Validation ) 是在機器學習中是一個評估模型性能的技術,從而使我們能更準確地估計模型在面對陌生資料的擬和能力,也就是模...
前言 在訓練模型時,有時會被一些專有名詞搞混,像一個參數就有分「參數」和「超參數」,今天我們要來搞清楚這兩個名詞的差異啦 ~ 參數 Parameters 在...
SVM (Support Vector Machine) 若資料為非線性,將資料映射到高維空間中(用kernel function) 找一超平面將資料分開,...