人工智慧(Artificial Intelligence,AI) 是一個廣泛討論和研究的領域,其主要目標是使機器或電腦系統具備像人類一樣的智慧和智能表現。 AI...
前言 在這 30 天中,跟著我的腳步一起踏進機器學習的世界,前半段我會帶著大家從機器學習最最最基礎的概念開始了解,了解到基本概念後,後半段就會開始進行 Pyto...
前幾天談的都是 GAN 生成影像的原理,那當我們訓練出 GAN 以後,要如何評估模型產生影像的表現並和其他生成模型比較呢? 人工判斷也許是最快能想到的方法。早期...
如同昨天文章的內容提到的,利用一個二元分類器作為 discriminator 和 generator 對抗,期望 generator 最終能學會產生近乎真實的影...
今天進入到 GAN 的理論了,真是讓人既期待又害怕受傷害(? 在這裡為了簡化說明,所以都是以 unconditional GAN 為例子~ 視覺化的解釋 下圖是...
今天要介紹的是生成對抗網路(generative adversarial network,簡稱 GAN)~ GAN 是一種用於解決生成任務的機器學習演算法,最早...
今天,我們推出了適用於 API 的 Cloudflare 序列分析。透過序列分析,訂閱 API Gateway 的客戶就能夠檢視對其端點最重要的 API 呼叫序...
This Book has no Author: Or does ChatGPT qualify as an author? 學者, Messick, 把跟Ch...
前言 本章節將介紹Ta-lib中的價格計算指標,協助進行股市的各類價格計算,將原始價格經由價格換算函數的處理後,提供使用者進行投資參考,訂定彈性的投資策略與技...
前言 本章節將介紹股市的量能指標,顧名思義是用來追蹤成交量的技術指標,以股市的成交量變化來衡量股市推動力,協助投資者判讀股價的走勢,例如,當一檔股票的成交量過...
前言 從本章節開始,將依照技術指標的類型或方向來進行分類,並在之後一一分享,內容將著重於介紹技術指標的用處以及視覺化的呈現,必須強調的是,技術分析理論並非無懈...
倒數兩天啦~今天要讓大家自己找檔案試試前幾集以故事為主題的教學,那就直接來囉! 選檔 這次大家可以選幾個類別的故事或文章,接著將它們用txt或tab檔存於檔案中...
於上一篇,我們懂得如何歸類故事類別,那麼今天將帶大家用機器學習模型對新故事進行分類!我們開始執行吧~ 匯檔→預處理→增加文字轉換成數值之屬性 這邊跟上一篇一樣,...
經過上一篇文字預處理後,我們會得到一行行的文本內容,但這樣對於機器學習來說是無法好好讀取訊息的,所以要將這些單字轉換成數值,以便後續操作。來!我們快點開始動手實...
在前幾次,我們有用表格與圖像的數據來進行分析,那麼今天要來點不一樣的,換成如標題所說的「文本」做主題啦~~預備備~開始! 安裝文字插件 打開Orange上的工作...
前言 鐵人賽來到了最後兩天,其幾天的內容屬於機器學習中監督式學習(Supervised learning)的模型,這兩天將撰寫的是兩種非監督式學習(Unsupe...
在上一篇中,我們是將許多張未分類過的圖像數據,讓電腦幫我們分類與查看它們之間的相似度(屬於無監督式學習);那麼今天,就是要將另外一群已分類好之圖像數據,進行模型...
前言 昨天介紹了Single Layer Neural network與Deep Neural Network,而模型的結構在隱藏層(hidden layer)...
前言 類神經網路(Neural Network, NN),又稱為神經網路、人工神經網路(Artificial Neural Network, ANN),屬於非線...
前言 過去內容提到的Optimal Separating Hyperplane、Support Vector Classifier與LDA等方法,都是利用線性的...
經過了幾次我們對於電腦內的表格或是Orange內分享的資料集進行分析,那其實數據有著許多型式,包括圖像、表格、文本或一段音頻等等,那今天我要為大家介紹的,是如何...
前言 昨天的內容提到當資料可以完美的利用一條直線或超平面(hyperplane)分類時,**最大邊距分類器(Maximal Margin Classifier)...
於第二十篇中,我們有提到Silhouette(輪廓),它是一個評估群聚效果的方法,可以幫我們找尋到最佳群聚數。而今天我們就來深入了解其含意,並且利用它來找出數據...
在上一篇我們有用到K-means把數據分群以及視覺化其分群效果,但若是沒先了解過K-means的你,經由上篇應該還沒有很懂它的運作方式吧,今天我將帶你一同了解其...
來到了鐵人賽的2/3天數了!再撐十天就可以完賽啦~好興奮壓>□< 我們要堅持下去壓,我相信若有看完的你們,一定會感到很充實der!準備好,我們就繼續...
前言 支持向量機(Support Vector Machine, SVM),是Vladimir Vapnik在 1960 年代首次開發的一類統計模型。在近幾年,...
前言 昨天的內容提到Bagging與Boosting改善預測結果的方法,不過在許多問題中Boosting常常表現得比Bagging更好,因此Boosting這類...
在上篇我們有用到wine這個內鍵數據集,今天一樣要用它來帶大家挑出主要影響分類的屬性!我們開始著手吧~ 分類型數據集評估 在上篇有說到,這組數據為義大利同一地區...
前言 集成學習(Ensemble Learning)是一種將多個模型整合起來,最後獲得比單一個模型表現更好的方法,例如在某筆資料集中可以使用KNN、線性迴歸模型...
過了一個假日,我們要在來繼續科普各位啦~但!今天是個特別的日子,因為是最後一篇科普篇惹,希望這天大家都能好好吸收,為往後實作篇打好基礎!(不過齁,若你是喜歡被科...